Gauss code |
O1O2O3U4U5O6O5U1U2O4U6U3 |
R3 orbit |
{'O1O2O3U4U5O6O5U1U2O4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4O5U2U3O6O4U6U5 |
Gauss code of K* |
O1O2U3O4O5U1U2U5O3O6U4U6 |
Gauss code of -K* |
O1O2U3O4O5U6U2O6O3U1U4U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 2 -1 1 0],[ 2 0 1 2 1 2 0],[ 0 -1 0 1 0 0 -1],[-2 -2 -1 0 -1 -1 -2],[ 1 -1 0 1 0 2 1],[-1 -2 0 1 -2 0 0],[ 0 0 1 2 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -1 -2],[-1 1 0 0 0 -2 -2],[ 0 1 0 0 -1 0 -1],[ 0 2 0 1 0 -1 0],[ 1 1 2 0 1 0 -1],[ 2 2 2 1 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,1,2,1,2,0,0,2,2,1,0,1,1,0,1] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,0,1,2,2,1,1,0,1,1,0,2,1,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,0,1,2,1,2,1,0,0,2,1,1,1,1,0,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,0,1,2,2,1,1,0,1,1,0,2,1,1,0] |
Phi of -K* |
[-2,-1,0,0,1,2,1,0,1,2,2,1,0,2,1,1,0,2,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+23t^4+80t^2+4 |
Outer characteristic polynomial |
t^7+33t^5+128t^3+14t |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 8*K1*K2 - 2*K1 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial |
256*K1**4*K2**3 - 1024*K1**4*K2**2 + 2048*K1**4*K2 - 1824*K1**4 - 512*K1**3*K2**2*K3 + 704*K1**3*K2*K3 - 1056*K1**3*K3 - 704*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 4480*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 11456*K1**2*K2**2 - 1152*K1**2*K2*K4 + 9208*K1**2*K2 - 128*K1**2*K3**2 - 5452*K1**2 + 2368*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 2720*K1*K2**2*K3 - 288*K1*K2**2*K5 - 416*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9280*K1*K2*K3 + 912*K1*K3*K4 + 64*K1*K4*K5 - 64*K2**6 + 352*K2**4*K4 - 3600*K2**4 - 32*K2**3*K6 - 1488*K2**2*K3**2 - 416*K2**2*K4**2 + 2912*K2**2*K4 - 2788*K2**2 + 632*K2*K3*K5 + 96*K2*K4*K6 - 2100*K3**2 - 676*K4**2 - 80*K5**2 - 12*K6**2 + 4226 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |