| Gauss code |
O1O2O3U4U5O6O5U3U1O4U2U6 |
| R3 orbit |
{'O1O2O3U4U5O6O5U3U1O4U2U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3U4U2O5U3U1O6O4U6U5 |
| Gauss code of K* |
O1O2U3O4O5U2U4U1O3O6U5U6 |
| Gauss code of -K* |
O1O2U3O4O5U6U1O6O3U5U2U4 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 0 0 -1 1 1],[ 1 0 0 0 0 1 1],[ 0 0 0 1 -1 0 0],[ 0 0 -1 0 0 0 -1],[ 1 0 1 0 0 2 2],[-1 -1 0 0 -2 0 1],[-1 -1 0 1 -2 -1 0]] |
| Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 1 0 0 -1 -2],[-1 -1 0 1 0 -1 -2],[ 0 0 -1 0 -1 0 0],[ 0 0 0 1 0 0 -1],[ 1 1 1 0 0 0 0],[ 1 2 2 0 1 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-1,-1,0,0,1,1,-1,0,0,1,2,-1,0,1,2,1,0,0,0,1,0] |
| Phi over symmetry |
[-1,-1,0,0,1,1,-1,0,0,1,2,-1,0,1,2,1,0,0,0,1,0] |
| Phi of -K |
[-1,-1,0,0,1,1,0,0,1,0,0,1,1,1,1,-1,1,1,1,2,-1] |
| Phi of K* |
[-1,-1,0,0,1,1,-1,1,2,0,1,1,1,0,1,1,0,1,1,1,0] |
| Phi of -K* |
[-1,-1,0,0,1,1,0,0,0,1,1,0,1,2,2,-1,-1,0,0,0,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
z^2+22z+41 |
| Enhanced Jones-Krushkal polynomial |
w^3z^2+22w^2z+41w |
| Inner characteristic polynomial |
t^6+14t^4+16t^2+1 |
| Outer characteristic polynomial |
t^7+18t^5+30t^3+5t |
| Flat arrow polynomial |
-12*K1**2 + 6*K2 + 7 |
| 2-strand cable arrow polynomial |
-64*K1**6 - 64*K1**4*K2**2 + 2016*K1**4*K2 - 7008*K1**4 + 224*K1**3*K2*K3 - 1024*K1**3*K3 + 512*K1**2*K2**3 - 6208*K1**2*K2**2 - 224*K1**2*K2*K4 + 12896*K1**2*K2 - 160*K1**2*K3**2 - 4980*K1**2 - 416*K1*K2**2*K3 + 5424*K1*K2*K3 + 256*K1*K3*K4 - 464*K2**4 + 424*K2**2*K4 - 4456*K2**2 - 1180*K3**2 - 112*K4**2 + 4606 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{6}, {1, 5}, {3, 4}, {2}]] |
| If K is slice |
False |