Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1820

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,3,3,2,3,0,1,0,1,1,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1820']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.568', '6.806', '6.1000', '6.1049', '6.1081', '6.1101', '6.1112', '6.1122', '6.1193', '6.1195', '6.1208', '6.1235', '6.1263', '6.1517', '6.1528', '6.1537', '6.1542', '6.1545', '6.1558', '6.1569', '6.1575', '6.1644', '6.1650', '6.1681', '6.1692', '6.1702', '6.1706', '6.1728', '6.1734', '6.1739', '6.1799', '6.1813', '6.1820', '6.1834', '6.1840', '6.1851', '6.1861', '6.1878']
Outer characteristic polynomial of the knot is: t^7+24t^5+100t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1820']
2-strand cable arrow polynomial of the knot is: -16*K1**4 + 608*K1**2*K2**3 - 3712*K1**2*K2**2 - 96*K1**2*K2*K4 + 4032*K1**2*K2 - 16*K1**2*K3**2 - 3412*K1**2 + 640*K1*K2**3*K3 - 864*K1*K2**2*K3 - 192*K1*K2**2*K5 + 4264*K1*K2*K3 + 224*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1208*K2**4 - 32*K2**3*K6 - 400*K2**2*K3**2 - 16*K2**2*K4**2 + 1384*K2**2*K4 - 2382*K2**2 + 152*K2*K3*K5 + 16*K2*K4*K6 - 1216*K3**2 - 374*K4**2 - 20*K5**2 - 2*K6**2 + 2580
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1820']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11545', 'vk6.11880', 'vk6.12896', 'vk6.13202', 'vk6.20687', 'vk6.22127', 'vk6.28205', 'vk6.29630', 'vk6.31327', 'vk6.31730', 'vk6.32491', 'vk6.32900', 'vk6.39663', 'vk6.41904', 'vk6.46251', 'vk6.47858', 'vk6.52325', 'vk6.52585', 'vk6.53169', 'vk6.53467', 'vk6.57617', 'vk6.58776', 'vk6.62289', 'vk6.63224', 'vk6.63827', 'vk6.63962', 'vk6.64273', 'vk6.64469', 'vk6.67083', 'vk6.67948', 'vk6.69691', 'vk6.70374']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U2O4U3O5O6U4U6U5
R3 orbit {'O1O2O3U1U2O4U3O5O6U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O5O4U1O6U2U3
Gauss code of K* O1O2O3U4U5U6O4O5U1O6U3U2
Gauss code of -K* O1O2O3U2U1O4U3O5O6U4U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 -1 1 1],[ 2 0 1 2 1 0 0],[ 0 -1 0 1 1 0 0],[-1 -2 -1 0 1 1 1],[ 1 -1 -1 -1 0 2 1],[-1 0 0 -1 -2 0 0],[-1 0 0 -1 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 -1 1 -2],[-1 -1 0 0 0 -1 0],[-1 -1 0 0 0 -2 0],[ 0 1 0 0 0 1 -1],[ 1 -1 1 2 -1 0 -1],[ 2 2 0 0 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,1,-1,2,0,0,1,0,0,2,0,-1,1,1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,3,3,2,3,0,1,0,1,1,-1,-1,0]
Phi of -K [-2,-1,0,1,1,1,0,1,1,3,3,2,3,0,1,0,1,1,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,0,3,1,0,3,1,1,1,3,2,1,0]
Phi of -K* [-2,-1,0,1,1,1,1,1,0,0,2,-1,1,2,-1,0,0,1,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial -4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w
Inner characteristic polynomial t^6+16t^4+19t^2+1
Outer characteristic polynomial t^7+24t^5+100t^3+8t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 4*K1*K2 - K1 + K2 + K3 + 2
2-strand cable arrow polynomial -16*K1**4 + 608*K1**2*K2**3 - 3712*K1**2*K2**2 - 96*K1**2*K2*K4 + 4032*K1**2*K2 - 16*K1**2*K3**2 - 3412*K1**2 + 640*K1*K2**3*K3 - 864*K1*K2**2*K3 - 192*K1*K2**2*K5 + 4264*K1*K2*K3 + 224*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1208*K2**4 - 32*K2**3*K6 - 400*K2**2*K3**2 - 16*K2**2*K4**2 + 1384*K2**2*K4 - 2382*K2**2 + 152*K2*K3*K5 + 16*K2*K4*K6 - 1216*K3**2 - 374*K4**2 - 20*K5**2 - 2*K6**2 + 2580
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact