Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1821

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,2,2,4,2,0,2,1,-1,1,1,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1821']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+25t^5+96t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1821']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 512*K1**4*K2 - 960*K1**4 + 416*K1**2*K2**3 - 1984*K1**2*K2**2 + 2408*K1**2*K2 - 64*K1**2*K3**2 - 1688*K1**2 + 160*K1*K2**3*K3 + 2048*K1*K2*K3 + 256*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 592*K2**4 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 432*K2**2*K4 - 1190*K2**2 + 200*K2*K3*K5 + 16*K2*K4*K6 - 728*K3**2 - 244*K4**2 - 32*K5**2 - 2*K6**2 + 1594
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1821']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4747', 'vk6.5076', 'vk6.6289', 'vk6.6730', 'vk6.8254', 'vk6.8705', 'vk6.9640', 'vk6.9957', 'vk6.20402', 'vk6.21755', 'vk6.27744', 'vk6.29278', 'vk6.39176', 'vk6.41408', 'vk6.45908', 'vk6.47545', 'vk6.48779', 'vk6.48992', 'vk6.49591', 'vk6.49796', 'vk6.50795', 'vk6.51012', 'vk6.51282', 'vk6.51479', 'vk6.57271', 'vk6.58500', 'vk6.61927', 'vk6.63024', 'vk6.66884', 'vk6.67766', 'vk6.69520', 'vk6.70230']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U2O4U3O5O6U5U4U6
R3 orbit {'O1O2O3U1U2O4U3O5O6U5U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O4O6U1O5U2U3
Gauss code of K* O1O2O3U4U5U6O4O5U2O6U1U3
Gauss code of -K* O1O2O3U1U3O4U2O5O6U4U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 0 -1 2],[ 2 0 1 2 1 0 0],[ 0 -1 0 1 1 0 0],[-1 -2 -1 0 1 0 1],[ 0 -1 -1 -1 0 0 2],[ 1 0 0 0 0 0 1],[-2 0 0 -1 -2 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -2 -1 0],[-1 1 0 -1 1 0 -2],[ 0 0 1 0 1 0 -1],[ 0 2 -1 -1 0 0 -1],[ 1 1 0 0 0 0 0],[ 2 0 2 1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,0,2,1,0,1,-1,0,2,-1,0,1,0,1,0]
Phi over symmetry [-2,-1,0,0,1,2,0,0,2,2,4,2,0,2,1,-1,1,1,1,1,1]
Phi of -K [-2,-1,0,0,1,2,1,1,1,1,4,1,1,2,2,-1,0,2,2,0,0]
Phi of K* [-2,-1,0,0,1,2,0,0,2,2,4,2,0,2,1,-1,1,1,1,1,1]
Phi of -K* [-2,-1,0,0,1,2,0,1,1,2,0,0,0,0,1,-1,-1,2,1,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 11z+23
Enhanced Jones-Krushkal polynomial -2w^3z+13w^2z+23w
Inner characteristic polynomial t^6+15t^4+24t^2
Outer characteristic polynomial t^7+25t^5+96t^3
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -192*K1**4*K2**2 + 512*K1**4*K2 - 960*K1**4 + 416*K1**2*K2**3 - 1984*K1**2*K2**2 + 2408*K1**2*K2 - 64*K1**2*K3**2 - 1688*K1**2 + 160*K1*K2**3*K3 + 2048*K1*K2*K3 + 256*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 592*K2**4 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 432*K2**2*K4 - 1190*K2**2 + 200*K2*K3*K5 + 16*K2*K4*K6 - 728*K3**2 - 244*K4**2 - 32*K5**2 - 2*K6**2 + 1594
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}]]
If K is slice True
Contact