Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1824

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,2,3,3,2,2,0,1,1,0,0,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1824']
Arrow polynomial of the knot is: -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.120', '6.213', '6.216', '6.320', '6.322', '6.615', '6.617', '6.891', '6.951', '6.955', '6.1001', '6.1012', '6.1022', '6.1043', '6.1047', '6.1063', '6.1074', '6.1249', '6.1544', '6.1546', '6.1555', '6.1573', '6.1574', '6.1585', '6.1756', '6.1757', '6.1762', '6.1802', '6.1803', '6.1824', '6.1881', '6.1935']
Outer characteristic polynomial of the knot is: t^7+22t^5+72t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1824']
2-strand cable arrow polynomial of the knot is: 1344*K1**4*K2 - 4432*K1**4 + 416*K1**3*K2*K3 - 1632*K1**3*K3 - 3872*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 576*K1**2*K2*K4 + 9400*K1**2*K2 - 976*K1**2*K3**2 - 96*K1**2*K3*K5 - 5516*K1**2 - 480*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 7080*K1*K2*K3 + 1712*K1*K3*K4 + 136*K1*K4*K5 - 104*K2**4 - 112*K2**2*K3**2 - 16*K2**2*K4**2 + 760*K2**2*K4 - 4756*K2**2 + 288*K2*K3*K5 + 32*K2*K4*K6 - 2464*K3**2 - 758*K4**2 - 124*K5**2 - 12*K6**2 + 4852
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1824']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4867', 'vk6.5212', 'vk6.6449', 'vk6.6870', 'vk6.8414', 'vk6.8835', 'vk6.9766', 'vk6.10059', 'vk6.11666', 'vk6.12019', 'vk6.13012', 'vk6.20498', 'vk6.20771', 'vk6.21863', 'vk6.27908', 'vk6.29406', 'vk6.29740', 'vk6.32663', 'vk6.33006', 'vk6.39335', 'vk6.39811', 'vk6.46375', 'vk6.47605', 'vk6.47952', 'vk6.48825', 'vk6.49096', 'vk6.51348', 'vk6.51561', 'vk6.53273', 'vk6.57367', 'vk6.64342', 'vk6.66920']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U3O4U2O5O6U4U6U5
R3 orbit {'O1O2O3U1U3O4U2O5O6U4U6U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O5O4U2O6U1U3
Gauss code of K* O1O2O3U4U5U6O4O6U1O5U3U2
Gauss code of -K* O1O2O3U2U1O4U3O5O6U5U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 -1 1 1],[ 2 0 2 1 1 0 0],[ 0 -2 0 0 1 1 1],[-1 -1 0 0 0 0 0],[ 1 -1 -1 0 0 2 1],[-1 0 -1 0 -2 0 0],[-1 0 -1 0 -1 0 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 0 0 0 0 -1],[-1 0 0 0 -1 -1 0],[-1 0 0 0 -1 -2 0],[ 0 0 1 1 0 1 -2],[ 1 0 1 2 -1 0 -1],[ 2 1 0 0 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,0,0,0,0,1,0,1,1,0,1,2,0,-1,2,1]
Phi over symmetry [-2,-1,0,1,1,1,0,0,2,3,3,2,2,0,1,1,0,0,0,0,0]
Phi of -K [-2,-1,0,1,1,1,0,0,2,3,3,2,2,0,1,1,0,0,0,0,0]
Phi of K* [-1,-1,-1,0,1,2,0,0,0,0,3,0,0,1,3,1,2,2,2,0,0]
Phi of -K* [-2,-1,0,1,1,1,1,2,0,0,1,-1,1,2,0,1,1,0,0,0,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+14t^4+19t^2+1
Outer characteristic polynomial t^7+22t^5+72t^3+5t
Flat arrow polynomial -2*K1**2 - 4*K1*K2 + 2*K1 + K2 + 2*K3 + 2
2-strand cable arrow polynomial 1344*K1**4*K2 - 4432*K1**4 + 416*K1**3*K2*K3 - 1632*K1**3*K3 - 3872*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 576*K1**2*K2*K4 + 9400*K1**2*K2 - 976*K1**2*K3**2 - 96*K1**2*K3*K5 - 5516*K1**2 - 480*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 7080*K1*K2*K3 + 1712*K1*K3*K4 + 136*K1*K4*K5 - 104*K2**4 - 112*K2**2*K3**2 - 16*K2**2*K4**2 + 760*K2**2*K4 - 4756*K2**2 + 288*K2*K3*K5 + 32*K2*K4*K6 - 2464*K3**2 - 758*K4**2 - 124*K5**2 - 12*K6**2 + 4852
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {2, 5}, {3, 4}, {1}]]
If K is slice False
Contact