Gauss code |
O1O2O3U1U3O4U2O5O6U5U4U6 |
R3 orbit |
{'O1O2O3U1U3O4U2O5O6U5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U5U6O4O6U2O5U1U3 |
Gauss code of K* |
O1O2O3U4U5U6O4O6U2O5U1U3 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 1 0 -1 2],[ 2 0 2 1 1 0 0],[ 0 -2 0 0 1 0 1],[-1 -1 0 0 0 0 0],[ 0 -1 -1 0 0 0 2],[ 1 0 0 0 0 0 1],[-2 0 -1 0 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 0 -1 -2 -1 0],[-1 0 0 0 0 0 -1],[ 0 1 0 0 1 0 -2],[ 0 2 0 -1 0 0 -1],[ 1 1 0 0 0 0 0],[ 2 0 1 2 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,0,1,2,1,0,0,0,0,1,-1,0,2,0,1,0] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,1,2,1,0,0,0,0,1,-1,0,2,0,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,1,0,1,2,4,1,1,2,2,-1,1,1,1,0,1] |
Phi of K* |
[-2,-1,0,0,1,2,1,0,1,2,4,1,1,2,2,-1,1,1,1,0,1] |
Phi of -K* |
[-2,-1,0,0,1,2,0,1,2,1,0,0,0,0,1,-1,0,2,0,1,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
20z+41 |
Enhanced Jones-Krushkal polynomial |
20w^2z+41w |
Inner characteristic polynomial |
t^6+13t^4+22t^2+1 |
Outer characteristic polynomial |
t^7+23t^5+70t^3+7t |
Flat arrow polynomial |
-12*K1**2 - 8*K1*K2 + 4*K1 + 6*K2 + 4*K3 + 7 |
2-strand cable arrow polynomial |
-256*K1**6 - 128*K1**4*K2**2 + 1088*K1**4*K2 - 4224*K1**4 + 768*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1216*K1**3*K3 - 3072*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 704*K1**2*K2*K4 + 9296*K1**2*K2 - 2496*K1**2*K3**2 - 192*K1**2*K3*K5 - 352*K1**2*K4**2 - 7096*K1**2 - 512*K1*K2**2*K3 + 64*K1*K2*K3**3 - 256*K1*K2*K3*K4 + 8528*K1*K2*K3 - 64*K1*K3**2*K5 + 3728*K1*K3*K4 + 672*K1*K4*K5 - 80*K2**4 - 384*K2**2*K3**2 - 32*K2**2*K4**2 + 976*K2**2*K4 - 5928*K2**2 + 688*K2*K3*K5 + 64*K2*K4*K6 - 128*K3**4 + 96*K3**2*K6 - 3696*K3**2 - 1588*K4**2 - 408*K5**2 - 32*K6**2 + 6618 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}]] |
If K is slice |
True |