Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1826

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,0,1,1,0,1,0,1,0,0,1,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1826', '7.42381']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+18t^5+45t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1826']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 576*K1**4*K2**2 + 2624*K1**4*K2 - 6128*K1**4 + 1408*K1**3*K2*K3 - 1056*K1**3*K3 - 448*K1**2*K2**4 + 2592*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 11120*K1**2*K2**2 - 1344*K1**2*K2*K4 + 10496*K1**2*K2 - 1040*K1**2*K3**2 - 144*K1**2*K4**2 - 2156*K1**2 + 1600*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 - 544*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 8328*K1*K2*K3 - 96*K1*K2*K4*K5 + 1216*K1*K3*K4 + 208*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 2440*K2**4 - 32*K2**3*K6 - 1120*K2**2*K3**2 - 112*K2**2*K4**2 + 1752*K2**2*K4 - 2030*K2**2 + 592*K2*K3*K5 + 88*K2*K4*K6 - 1380*K3**2 - 358*K4**2 - 80*K5**2 - 18*K6**2 + 3084
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1826']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.504', 'vk6.597', 'vk6.622', 'vk6.1004', 'vk6.1103', 'vk6.1129', 'vk6.1663', 'vk6.1839', 'vk6.2178', 'vk6.2181', 'vk6.2287', 'vk6.2310', 'vk6.2783', 'vk6.2886', 'vk6.3066', 'vk6.3194', 'vk6.5248', 'vk6.6505', 'vk6.8885', 'vk6.9802', 'vk6.20815', 'vk6.21048', 'vk6.22212', 'vk6.22472', 'vk6.28497', 'vk6.29778', 'vk6.39875', 'vk6.40273', 'vk6.46429', 'vk6.46929', 'vk6.49120', 'vk6.58827']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U3O4U2O5O6U5U6U4
R3 orbit {'O1O2O3U1U3O4U2O5O6U5U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U5U6O5O6U2O4U1U3
Gauss code of K* O1O2O3U4U5U6O4O6U3O5U1U2
Gauss code of -K* O1O2O3U2U3O4U1O5O6U5U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 1 1 -1 1],[ 2 0 2 1 1 0 0],[ 0 -2 0 0 1 0 0],[-1 -1 0 0 0 0 0],[-1 -1 -1 0 0 -1 1],[ 1 0 0 0 1 0 1],[-1 0 0 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -1],[-1 -1 0 0 0 -1 0],[-1 0 0 0 0 0 -1],[ 0 1 0 0 0 0 -2],[ 1 1 1 0 0 0 0],[ 2 1 0 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,1,0,0,1,0,0,0,1,0,2,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,0,1,1,0,1,0,1,0,0,1,0,-1,0]
Phi of -K [-2,-1,0,1,1,1,1,0,2,2,3,1,1,2,1,0,1,1,0,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,1,3,0,0,1,2,1,2,2,1,0,1]
Phi of -K* [-2,-1,0,1,1,1,0,2,0,1,1,0,1,0,1,0,0,1,0,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+10t^4+18t^2+1
Outer characteristic polynomial t^7+18t^5+45t^3+8t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -256*K1**6 - 576*K1**4*K2**2 + 2624*K1**4*K2 - 6128*K1**4 + 1408*K1**3*K2*K3 - 1056*K1**3*K3 - 448*K1**2*K2**4 + 2592*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 11120*K1**2*K2**2 - 1344*K1**2*K2*K4 + 10496*K1**2*K2 - 1040*K1**2*K3**2 - 144*K1**2*K4**2 - 2156*K1**2 + 1600*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 - 544*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 8328*K1*K2*K3 - 96*K1*K2*K4*K5 + 1216*K1*K3*K4 + 208*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 2440*K2**4 - 32*K2**3*K6 - 1120*K2**2*K3**2 - 112*K2**2*K4**2 + 1752*K2**2*K4 - 2030*K2**2 + 592*K2*K3*K5 + 88*K2*K4*K6 - 1380*K3**2 - 358*K4**2 - 80*K5**2 - 18*K6**2 + 3084
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {2, 3}, {1}]]
If K is slice False
Contact