Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1827

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,2,2,0,1,1,2,1,1,1,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1827']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+24t^5+43t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1827']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 128*K1**4*K2**2 + 672*K1**4*K2 - 1504*K1**4 + 384*K1**3*K2*K3 + 32*K1**3*K3*K4 - 704*K1**3*K3 - 1216*K1**2*K2**2 - 288*K1**2*K2*K4 + 3680*K1**2*K2 - 352*K1**2*K3**2 - 80*K1**2*K4**2 - 2492*K1**2 - 224*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 2656*K1*K2*K3 + 784*K1*K3*K4 + 168*K1*K4*K5 - 24*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 360*K2**2*K4 - 1996*K2**2 + 160*K2*K3*K5 + 32*K2*K4*K6 - 1040*K3**2 - 406*K4**2 - 92*K5**2 - 4*K6**2 + 2084
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1827']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4128', 'vk6.4159', 'vk6.5370', 'vk6.5401', 'vk6.5466', 'vk6.5577', 'vk6.7496', 'vk6.7662', 'vk6.9001', 'vk6.9032', 'vk6.11179', 'vk6.12263', 'vk6.12370', 'vk6.12445', 'vk6.12476', 'vk6.13360', 'vk6.13581', 'vk6.13612', 'vk6.14256', 'vk6.14705', 'vk6.14748', 'vk6.15195', 'vk6.15863', 'vk6.15908', 'vk6.26198', 'vk6.26643', 'vk6.30854', 'vk6.30885', 'vk6.32042', 'vk6.32073', 'vk6.33086', 'vk6.33117', 'vk6.38161', 'vk6.38178', 'vk6.44822', 'vk6.44919', 'vk6.49214', 'vk6.49319', 'vk6.52761', 'vk6.53532']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U3O4U5O6O5U2U4U6
R3 orbit {'O1O2O3U1U3U4O5O4O6U2U6U5', 'O1O2O3U1U3O4U5O6O5U2U4U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5U2O6O4U6O5U1U3
Gauss code of K* O1O2O3U4U1U5O4O5U2O6U3U6
Gauss code of -K* O1O2O3U4U1O4U2O5O6U5U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 2 1 1 2 1],[ 1 -2 0 0 1 1 1],[-1 -1 0 0 0 -1 0],[ 0 -1 -1 0 0 0 0],[-1 -2 -1 1 0 0 1],[-1 -1 -1 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 0 0 0 -1],[-1 -1 0 0 0 -1 -1],[ 0 0 0 0 0 -1 -1],[ 1 1 0 1 1 0 -2],[ 2 2 1 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,0,0,0,1,0,1,1,1,1,2]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,2,2,0,1,1,2,1,1,1,-1,-1,0]
Phi of -K [-2,-1,0,1,1,1,-1,1,1,2,2,0,1,1,2,1,1,1,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,1,2,1,1,1,1,1,2,2,0,1,-1]
Phi of -K* [-2,-1,0,1,1,1,2,1,1,1,2,1,0,1,1,0,0,0,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 13z+27
Enhanced Jones-Krushkal polynomial 13w^2z+27w
Inner characteristic polynomial t^6+16t^4+18t^2+1
Outer characteristic polynomial t^7+24t^5+43t^3+4t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -192*K1**6 - 128*K1**4*K2**2 + 672*K1**4*K2 - 1504*K1**4 + 384*K1**3*K2*K3 + 32*K1**3*K3*K4 - 704*K1**3*K3 - 1216*K1**2*K2**2 - 288*K1**2*K2*K4 + 3680*K1**2*K2 - 352*K1**2*K3**2 - 80*K1**2*K4**2 - 2492*K1**2 - 224*K1*K2**2*K3 - 128*K1*K2*K3*K4 + 2656*K1*K2*K3 + 784*K1*K3*K4 + 168*K1*K4*K5 - 24*K2**4 - 96*K2**2*K3**2 - 48*K2**2*K4**2 + 360*K2**2*K4 - 1996*K2**2 + 160*K2*K3*K5 + 32*K2*K4*K6 - 1040*K3**2 - 406*K4**2 - 92*K5**2 - 4*K6**2 + 2084
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact