Gauss code |
O1O2O3U1U4O5U6O4O6U2U3U5 |
R3 orbit |
{'O1O2O3U1U4O5U6O4O6U2U3U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U4U1U2O5O6U5O4U6U3 |
Gauss code of K* |
O1O2O3U4U1U2O4O5U3O6U5U6 |
Gauss code of -K* |
O1O2O3U4U5O4U1O5O6U2U3U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 0 1 1],[ 2 0 1 2 2 2 2],[ 1 -1 0 1 0 1 2],[-1 -2 -1 0 -2 0 0],[ 0 -2 0 2 0 2 0],[-1 -2 -1 0 -2 0 -1],[-1 -2 -2 0 0 1 0]] |
Primitive based matrix |
[[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 -2 -2],[-1 -1 0 0 -2 -1 -2],[-1 0 0 0 -2 -1 -2],[ 0 0 2 2 0 0 -2],[ 1 2 1 1 0 0 -1],[ 2 2 2 2 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,0,1,2,-1,0,0,2,2,0,2,1,2,2,1,2,0,2,1] |
Phi over symmetry |
[-2,-1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,-1,-1,-1,0,0] |
Phi of -K |
[-2,-1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,-1,-1,-1,0,0] |
Phi of K* |
[-1,-1,-1,0,1,2,-1,0,-1,1,1,0,1,0,1,-1,1,1,1,0,0] |
Phi of -K* |
[-2,-1,0,1,1,1,1,2,2,2,2,0,1,1,2,2,2,0,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+32t^4+90t^2 |
Outer characteristic polynomial |
t^7+40t^5+131t^3+13t |
Flat arrow polynomial |
8*K1**3 - 2*K1**2 - 4*K1*K2 - 4*K1 + K2 + 2 |
2-strand cable arrow polynomial |
128*K1**4*K2**3 - 832*K1**4*K2**2 + 1344*K1**4*K2 - 1152*K1**4 - 128*K1**3*K2**2*K3 + 384*K1**3*K2*K3 - 288*K1**3*K3 - 576*K1**2*K2**4 + 2816*K1**2*K2**3 - 9456*K1**2*K2**2 - 256*K1**2*K2*K4 + 7408*K1**2*K2 - 4024*K1**2 + 992*K1*K2**3*K3 - 1248*K1*K2**2*K3 - 96*K1*K2**2*K5 + 6320*K1*K2*K3 + 80*K1*K3*K4 - 64*K2**6 + 128*K2**4*K4 - 1928*K2**4 - 336*K2**2*K3**2 - 48*K2**2*K4**2 + 1072*K2**2*K4 - 1912*K2**2 + 48*K2*K3*K5 - 1128*K3**2 - 102*K4**2 + 2852 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}]] |
If K is slice |
False |