Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1841

Min(phi) over symmetries of the knot is: [-2,0,1,1,1,1,1,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1841', '7.44957']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 8*K1*K2 + K1 + 3*K2 + 3*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1080', '6.1837', '6.1841', '6.1865']
Outer characteristic polynomial of the knot is: t^5+11t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1841']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 128*K1**4*K2**2 + 640*K1**4*K2 - 1440*K1**4 + 32*K1**3*K2*K3 + 32*K1**3*K3*K4 + 32*K1**3*K4*K5 + 256*K1**2*K2**3 - 1488*K1**2*K2**2 + 2416*K1**2*K2 - 416*K1**2*K3**2 - 208*K1**2*K4**2 - 64*K1**2*K5**2 - 1532*K1**2 + 64*K1*K2**3*K3 + 1616*K1*K2*K3 + 760*K1*K3*K4 + 320*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 312*K2**4 - 144*K2**2*K3**2 - 64*K2**2*K4**2 + 384*K2**2*K4 - 1370*K2**2 + 272*K2*K3*K5 + 56*K2*K4*K6 - 780*K3**2 - 506*K4**2 - 224*K5**2 - 30*K6**2 + 1808
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1841']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4219', 'vk6.4298', 'vk6.5480', 'vk6.5591', 'vk6.7586', 'vk6.7680', 'vk6.9088', 'vk6.9167', 'vk6.11181', 'vk6.12269', 'vk6.12376', 'vk6.19373', 'vk6.19666', 'vk6.19771', 'vk6.26157', 'vk6.26208', 'vk6.26573', 'vk6.26653', 'vk6.30771', 'vk6.31318', 'vk6.31713', 'vk6.31976', 'vk6.32476', 'vk6.32891', 'vk6.38153', 'vk6.38184', 'vk6.39080', 'vk6.41336', 'vk6.44814', 'vk6.44929', 'vk6.45836', 'vk6.48529', 'vk6.49333', 'vk6.52310', 'vk6.53154', 'vk6.58428', 'vk6.62952', 'vk6.63599', 'vk6.66309', 'vk6.66332']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4O5U3O6O4U6U5U2
R3 orbit {'O1O2O3U1U4O5U3O6O4U6U5U2', 'O1O2O3U1U4U2O5O6O4U6U3U5'}
R3 orbit length 2
Gauss code of -K O1O2O3U2U4U5O6O5U1O4U6U3
Gauss code of K* O1O2O3U4U3U5O4O6U2O5U1U6
Gauss code of -K* O1O2O3U4U3O5U2O4O6U5U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 1 1 0 -1],[ 2 0 2 1 1 1 0],[-1 -2 0 0 0 0 -1],[-1 -1 0 0 -1 0 -1],[-1 -1 0 1 0 -1 -1],[ 0 -1 0 0 1 0 0],[ 1 0 1 1 1 0 0]]
Primitive based matrix [[ 0 1 1 0 -2],[-1 0 1 -1 -1],[-1 -1 0 0 -1],[ 0 1 0 0 -1],[ 2 1 1 1 0]]
If based matrix primitive False
Phi of primitive based matrix [-1,-1,0,2,-1,1,1,0,1,1]
Phi over symmetry [-2,0,1,1,1,1,1,0,1,-1]
Phi of -K [-2,0,1,1,1,2,2,0,1,-1]
Phi of K* [-1,-1,0,2,-1,1,2,0,2,1]
Phi of -K* [-2,0,1,1,1,1,1,0,1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 11z+23
Enhanced Jones-Krushkal polynomial -2w^3z+13w^2z+23w
Inner characteristic polynomial t^4+5t^2+4
Outer characteristic polynomial t^5+11t^3+11t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 8*K1*K2 + K1 + 3*K2 + 3*K3 + 4
2-strand cable arrow polynomial -64*K1**6 - 128*K1**4*K2**2 + 640*K1**4*K2 - 1440*K1**4 + 32*K1**3*K2*K3 + 32*K1**3*K3*K4 + 32*K1**3*K4*K5 + 256*K1**2*K2**3 - 1488*K1**2*K2**2 + 2416*K1**2*K2 - 416*K1**2*K3**2 - 208*K1**2*K4**2 - 64*K1**2*K5**2 - 1532*K1**2 + 64*K1*K2**3*K3 + 1616*K1*K2*K3 + 760*K1*K3*K4 + 320*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 312*K2**4 - 144*K2**2*K3**2 - 64*K2**2*K4**2 + 384*K2**2*K4 - 1370*K2**2 + 272*K2*K3*K5 + 56*K2*K4*K6 - 780*K3**2 - 506*K4**2 - 224*K5**2 - 30*K6**2 + 1808
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}]]
If K is slice False
Contact