Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1844

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,0,0,0,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1844', '7.41196']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+20t^5+23t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1844', '7.35146']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 320*K1**4*K2**2 + 1344*K1**4*K2 - 2768*K1**4 + 512*K1**3*K2*K3 - 320*K1**3*K3 - 192*K1**2*K2**4 + 1024*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 4432*K1**2*K2**2 - 352*K1**2*K2*K4 + 4192*K1**2*K2 - 400*K1**2*K3**2 - 48*K1**2*K4**2 - 364*K1**2 + 320*K1*K2**3*K3 - 576*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 2784*K1*K2*K3 + 304*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 776*K2**4 - 256*K2**2*K3**2 - 48*K2**2*K4**2 + 536*K2**2*K4 - 710*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 340*K3**2 - 78*K4**2 - 16*K5**2 - 2*K6**2 + 1028
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1844']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.65', 'vk6.120', 'vk6.219', 'vk6.266', 'vk6.296', 'vk6.682', 'vk6.711', 'vk6.756', 'vk6.1225', 'vk6.1272', 'vk6.1365', 'vk6.1412', 'vk6.1505', 'vk6.1565', 'vk6.1934', 'vk6.2042', 'vk6.2437', 'vk6.2484', 'vk6.2643', 'vk6.2987', 'vk6.5754', 'vk6.5785', 'vk6.7823', 'vk6.7854', 'vk6.10258', 'vk6.10401', 'vk6.13296', 'vk6.13327', 'vk6.14780', 'vk6.14801', 'vk6.15940', 'vk6.15959', 'vk6.18052', 'vk6.24496', 'vk6.25847', 'vk6.33053', 'vk6.37400', 'vk6.37954', 'vk6.38019', 'vk6.44854']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U3O4U5O6O5U1U4U6
R3 orbit {'O1O2O3U2U3O4U5O6O5U1U4U6', 'O1O2O3U2U3U4O5O4O6U1U6U5'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5U3O6O4U6O5U1U2
Gauss code of K* O1O2O3U1U4U5O4O5U2O6U3U6
Gauss code of -K* O1O2O3U4U1O4U2O5O6U5U6U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 1 0 1 1],[ 2 0 -1 1 1 2 1],[ 1 1 0 1 0 1 0],[-1 -1 -1 0 0 -1 0],[ 0 -1 0 0 0 0 0],[-1 -2 -1 1 0 0 1],[-1 -1 0 0 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 0 -1 -2],[-1 -1 0 0 0 0 -1],[-1 -1 0 0 0 -1 -1],[ 0 0 0 0 0 0 -1],[ 1 1 0 1 0 0 1],[ 2 2 1 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,0,1,2,0,0,0,1,0,1,1,0,1,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,0,0,0,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,2,1,1,2,2,1,1,1,2,1,1,1,-1,-1,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,1,1,2,1,1,1,1,1,2,2,1,1,2]
Phi of -K* [-2,-1,0,1,1,1,-1,1,1,1,2,0,0,1,1,0,0,0,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial 3w^3z^2+16w^2z+21w
Inner characteristic polynomial t^6+12t^4+10t^2+1
Outer characteristic polynomial t^7+20t^5+23t^3+4t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -256*K1**6 - 320*K1**4*K2**2 + 1344*K1**4*K2 - 2768*K1**4 + 512*K1**3*K2*K3 - 320*K1**3*K3 - 192*K1**2*K2**4 + 1024*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 4432*K1**2*K2**2 - 352*K1**2*K2*K4 + 4192*K1**2*K2 - 400*K1**2*K3**2 - 48*K1**2*K4**2 - 364*K1**2 + 320*K1*K2**3*K3 - 576*K1*K2**2*K3 - 96*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 2784*K1*K2*K3 + 304*K1*K3*K4 + 48*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 776*K2**4 - 256*K2**2*K3**2 - 48*K2**2*K4**2 + 536*K2**2*K4 - 710*K2**2 + 144*K2*K3*K5 + 16*K2*K4*K6 - 340*K3**2 - 78*K4**2 - 16*K5**2 - 2*K6**2 + 1028
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {4, 5}, {2, 3}, {1}]]
If K is slice False
Contact