Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1849

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,0,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1615', '6.1849']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 + 5*K2 + 3*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.374', '6.446', '6.527', '6.1218', '6.1237', '6.1276', '6.1498', '6.1523', '6.1595', '6.1703', '6.1751', '6.1766', '6.1849', '6.1926']
Outer characteristic polynomial of the knot is: t^7+20t^5+20t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1615', '6.1849']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 256*K1**4*K2**2 + 3616*K1**4*K2 - 6368*K1**4 - 128*K1**3*K2**2*K3 + 768*K1**3*K2*K3 + 96*K1**3*K3*K4 - 2400*K1**3*K3 + 32*K1**3*K4*K5 + 992*K1**2*K2**3 - 6544*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 768*K1**2*K2*K4 + 12112*K1**2*K2 - 1120*K1**2*K3**2 - 160*K1**2*K3*K5 - 368*K1**2*K4**2 - 32*K1**2*K4*K6 - 32*K1**2*K5**2 - 6648*K1**2 + 256*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 224*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 8440*K1*K2*K3 - 32*K1*K2*K4*K5 + 2440*K1*K3*K4 + 744*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 808*K2**4 - 32*K2**3*K6 - 240*K2**2*K3**2 - 64*K2**2*K4**2 + 1288*K2**2*K4 - 5210*K2**2 + 440*K2*K3*K5 + 56*K2*K4*K6 - 2752*K3**2 - 1102*K4**2 - 312*K5**2 - 14*K6**2 + 5852
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1849']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4834', 'vk6.5177', 'vk6.6402', 'vk6.6833', 'vk6.8367', 'vk6.8795', 'vk6.9735', 'vk6.10038', 'vk6.11631', 'vk6.11982', 'vk6.12977', 'vk6.20460', 'vk6.20727', 'vk6.21815', 'vk6.27844', 'vk6.29354', 'vk6.31434', 'vk6.32612', 'vk6.39278', 'vk6.39759', 'vk6.41458', 'vk6.46323', 'vk6.47581', 'vk6.47900', 'vk6.49059', 'vk6.49891', 'vk6.51321', 'vk6.51538', 'vk6.53242', 'vk6.57319', 'vk6.62005', 'vk6.64319']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U4O5U1O6O4U6U5U3
R3 orbit {'O1O2O3U2U4O5U1O6O4U6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U5O6O5U3O4U6U2
Gauss code of K* O1O2O3U4U5U3O5O6U2O4U1U6
Gauss code of -K* O1O2O3U4U3O5U2O4O6U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 1 0 -1],[ 1 0 0 2 1 0 -1],[ 1 0 0 1 1 0 0],[-2 -2 -1 0 0 -1 -1],[-1 -1 -1 0 0 -1 -1],[ 0 0 0 1 1 0 0],[ 1 1 0 1 1 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 -1 -1 -2],[-1 0 0 -1 -1 -1 -1],[ 0 1 1 0 0 0 0],[ 1 1 1 0 0 0 1],[ 1 1 1 0 0 0 0],[ 1 2 1 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,0,0,0,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,1,1,1,1,0,0,0,0,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,1,1,1,1,2,0,1,1]
Phi of K* [-2,-1,0,1,1,1,1,1,1,2,2,0,1,1,1,1,1,1,-1,0,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,1,2,0,0,1,1,0,1,1,1,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+12t^4+7t^2
Outer characteristic polynomial t^7+20t^5+20t^3+4t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 8*K1*K2 + K1 + 5*K2 + 3*K3 + 6
2-strand cable arrow polynomial -128*K1**6 - 256*K1**4*K2**2 + 3616*K1**4*K2 - 6368*K1**4 - 128*K1**3*K2**2*K3 + 768*K1**3*K2*K3 + 96*K1**3*K3*K4 - 2400*K1**3*K3 + 32*K1**3*K4*K5 + 992*K1**2*K2**3 - 6544*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 768*K1**2*K2*K4 + 12112*K1**2*K2 - 1120*K1**2*K3**2 - 160*K1**2*K3*K5 - 368*K1**2*K4**2 - 32*K1**2*K4*K6 - 32*K1**2*K5**2 - 6648*K1**2 + 256*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 224*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 8440*K1*K2*K3 - 32*K1*K2*K4*K5 + 2440*K1*K3*K4 + 744*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 808*K2**4 - 32*K2**3*K6 - 240*K2**2*K3**2 - 64*K2**2*K4**2 + 1288*K2**2*K4 - 5210*K2**2 + 440*K2*K3*K5 + 56*K2*K4*K6 - 2752*K3**2 - 1102*K4**2 - 312*K5**2 - 14*K6**2 + 5852
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}]]
If K is slice False
Contact