Gauss code |
O1O2O3O4O5U2O6U1U3U4U6U5 |
R3 orbit |
{'O1O2O3O4O5U2O6U1U3U4U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U1U6U2U3U5O6U4 |
Gauss code of K* |
O1O2O3O4O5U1U6U2U3U5O6U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 -1 1 4 3],[ 4 0 0 2 3 5 3],[ 3 0 0 1 2 3 2],[ 1 -2 -1 0 1 3 2],[-1 -3 -2 -1 0 2 1],[-4 -5 -3 -3 -2 0 0],[-3 -3 -2 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 4 3 1 -1 -3 -4],[-4 0 0 -2 -3 -3 -5],[-3 0 0 -1 -2 -2 -3],[-1 2 1 0 -1 -2 -3],[ 1 3 2 1 0 -1 -2],[ 3 3 2 2 1 0 0],[ 4 5 3 3 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-3,-1,1,3,4,0,2,3,3,5,1,2,2,3,1,2,3,1,2,0] |
Phi over symmetry |
[-4,-3,-1,1,3,4,0,2,3,3,5,1,2,2,3,1,2,3,1,2,0] |
Phi of -K |
[-4,-3,-1,1,3,4,1,1,2,4,3,1,2,4,4,1,2,2,1,1,1] |
Phi of K* |
[-4,-3,-1,1,3,4,1,1,2,4,3,1,2,4,4,1,2,2,1,1,1] |
Phi of -K* |
[-4,-3,-1,1,3,4,0,2,3,3,5,1,2,2,3,1,2,3,1,2,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+84t^4+12t^2 |
Outer characteristic polynomial |
t^7+136t^5+58t^3+4t |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 16*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 6*K2 + 7 |
2-strand cable arrow polynomial |
-3552*K1**4 + 1984*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1216*K1**3*K3 - 256*K1**2*K2**4 + 1088*K1**2*K2**3 - 1152*K1**2*K2**2*K3**2 - 11712*K1**2*K2**2 + 192*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 1664*K1**2*K2*K4 + 14800*K1**2*K2 - 1440*K1**2*K3**2 - 64*K1**2*K3*K5 - 96*K1**2*K4**2 - 8544*K1**2 + 256*K1*K2**3*K3**3 + 4480*K1*K2**3*K3 + 704*K1*K2**2*K3*K4 - 2432*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 960*K1*K2**2*K5 + 384*K1*K2*K3**3 - 512*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 12832*K1*K2*K3 - 64*K1*K2*K4*K5 + 1888*K1*K3*K4 + 176*K1*K4*K5 - 64*K2**6 - 512*K2**4*K3**2 - 64*K2**4*K4**2 + 256*K2**4*K4 - 3360*K2**4 + 256*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 128*K2**2*K3**4 - 2624*K2**2*K3**2 - 496*K2**2*K4**2 + 2960*K2**2*K4 - 64*K2**2*K5**2 - 16*K2**2*K6**2 - 5200*K2**2 + 1056*K2*K3*K5 + 160*K2*K4*K6 - 64*K3**4 - 3096*K3**2 - 724*K4**2 - 72*K5**2 - 8*K6**2 + 6554 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
True |