Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1854

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,1,1,1,0,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1854']
Arrow polynomial of the knot is: -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.425', '6.655', '6.755', '6.769', '6.792', '6.1240', '6.1494', '6.1522', '6.1534', '6.1587', '6.1707', '6.1746', '6.1747', '6.1786', '6.1814', '6.1828', '6.1835', '6.1854', '6.1870']
Outer characteristic polynomial of the knot is: t^7+28t^5+44t^3+15t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1854']
2-strand cable arrow polynomial of the knot is: -192*K1**6 - 192*K1**4*K2**2 + 1376*K1**4*K2 - 3872*K1**4 + 640*K1**3*K2*K3 + 192*K1**3*K3*K4 - 544*K1**3*K3 + 640*K1**2*K2**3 - 5248*K1**2*K2**2 - 640*K1**2*K2*K4 + 8544*K1**2*K2 - 1120*K1**2*K3**2 - 96*K1**2*K3*K5 - 272*K1**2*K4**2 - 4668*K1**2 - 1056*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 6648*K1*K2*K3 + 1880*K1*K3*K4 + 296*K1*K4*K5 - 392*K2**4 - 96*K2**2*K3**2 - 16*K2**2*K4**2 + 776*K2**2*K4 - 4036*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 2184*K3**2 - 694*K4**2 - 124*K5**2 - 12*K6**2 + 4340
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1854']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4073', 'vk6.4106', 'vk6.5311', 'vk6.5344', 'vk6.7443', 'vk6.7474', 'vk6.8942', 'vk6.8975', 'vk6.10115', 'vk6.10280', 'vk6.10305', 'vk6.14537', 'vk6.15270', 'vk6.15399', 'vk6.15759', 'vk6.16176', 'vk6.29863', 'vk6.29896', 'vk6.33904', 'vk6.33989', 'vk6.34204', 'vk6.34374', 'vk6.48471', 'vk6.49174', 'vk6.50223', 'vk6.50256', 'vk6.51607', 'vk6.53963', 'vk6.54028', 'vk6.54175', 'vk6.54468', 'vk6.63326']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U1O4U5O6O5U2U6U3
R3 orbit {'O1O2O3U4U1O4U5O6O5U2U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U2O5O4U5O6U3U6
Gauss code of K* O1O2O3U4U1U3O5O4U5O6U2U6
Gauss code of -K* O1O2O3U4U2O4U5O6O5U1U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 -1 1 0],[ 1 0 0 1 1 1 1],[ 1 0 0 2 1 1 0],[-2 -1 -2 0 -2 -1 -1],[ 1 -1 -1 2 0 2 0],[-1 -1 -1 1 -2 0 0],[ 0 -1 0 1 0 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 -1 -1 -2],[ 0 1 0 0 -1 0 0],[ 1 1 1 1 0 0 1],[ 1 2 1 0 0 0 1],[ 1 2 2 0 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,1,1,2,2,0,1,1,2,1,0,0,0,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,1,1,1,0,-1,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,0,1,2,1,1,0,1,1,1,1,1,1,0]
Phi of K* [-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,1,1,1,0,-1,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,0,2,2,0,0,1,2,1,1,1,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+20t^4+29t^2+9
Outer characteristic polynomial t^7+28t^5+44t^3+15t
Flat arrow polynomial -10*K1**2 - 4*K1*K2 + 2*K1 + 5*K2 + 2*K3 + 6
2-strand cable arrow polynomial -192*K1**6 - 192*K1**4*K2**2 + 1376*K1**4*K2 - 3872*K1**4 + 640*K1**3*K2*K3 + 192*K1**3*K3*K4 - 544*K1**3*K3 + 640*K1**2*K2**3 - 5248*K1**2*K2**2 - 640*K1**2*K2*K4 + 8544*K1**2*K2 - 1120*K1**2*K3**2 - 96*K1**2*K3*K5 - 272*K1**2*K4**2 - 4668*K1**2 - 1056*K1*K2**2*K3 - 96*K1*K2*K3*K4 + 6648*K1*K2*K3 + 1880*K1*K3*K4 + 296*K1*K4*K5 - 392*K2**4 - 96*K2**2*K3**2 - 16*K2**2*K4**2 + 776*K2**2*K4 - 4036*K2**2 + 184*K2*K3*K5 + 32*K2*K4*K6 - 2184*K3**2 - 694*K4**2 - 124*K5**2 - 12*K6**2 + 4340
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {1, 3}]]
If K is slice False
Contact