Gauss code |
O1O2O3U4U2O4U5O6O5U1U6U3 |
R3 orbit |
{'O1O2O3U4U2O4U5O6O5U1U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4U3O5O4U5O6U2U6 |
Gauss code of K* |
O1O2O3U1U4U3O5O4U5O6U2U6 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 2 -1 1 0],[ 2 0 1 3 1 2 0],[ 0 -1 0 0 0 0 0],[-2 -3 0 0 -2 -1 -1],[ 1 -1 0 2 0 2 0],[-1 -2 0 1 -2 0 0],[ 0 0 0 1 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -2 -3],[-1 1 0 0 0 -2 -2],[ 0 0 0 0 0 0 -1],[ 0 1 0 0 0 0 0],[ 1 2 2 0 0 0 -1],[ 2 3 2 1 0 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,0,0,1,2,1,0,1,2,3,0,0,2,2,0,0,1,0,0,1] |
Phi over symmetry |
[-2,-1,0,0,1,2,0,1,2,1,1,1,1,0,1,0,1,2,1,1,0] |
Phi of -K |
[-2,-1,0,0,1,2,0,1,2,1,1,1,1,0,1,0,1,2,1,1,0] |
Phi of K* |
[-2,-1,0,0,1,2,0,1,2,1,1,1,1,0,1,0,1,2,1,1,0] |
Phi of -K* |
[-2,-1,0,0,1,2,1,0,1,2,3,0,0,2,2,0,0,1,0,0,1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
21z+43 |
Enhanced Jones-Krushkal polynomial |
21w^2z+43w |
Inner characteristic polynomial |
t^6+25t^4+28t^2+4 |
Outer characteristic polynomial |
t^7+35t^5+44t^3+8t |
Flat arrow polynomial |
-12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 1152*K1**4*K2 - 5568*K1**4 + 960*K1**3*K2*K3 - 896*K1**3*K3 + 256*K1**2*K2**2*K4 - 6304*K1**2*K2**2 - 1024*K1**2*K2*K4 + 12512*K1**2*K2 - 768*K1**2*K3**2 - 128*K1**2*K4**2 - 32*K1**2*K5**2 - 6928*K1**2 - 832*K1*K2**2*K3 - 320*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 9168*K1*K2*K3 + 1872*K1*K3*K4 + 448*K1*K4*K5 + 80*K1*K5*K6 - 752*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 2032*K2**2*K4 - 6724*K2**2 + 624*K2*K3*K5 + 32*K2*K4*K6 - 3096*K3**2 - 1284*K4**2 - 376*K5**2 - 44*K6**2 + 6754 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
True |