Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1865

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,0,1,2,3,1,1,2,1,1,1,0,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1865']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 8*K1*K2 + K1 + 3*K2 + 3*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1080', '6.1837', '6.1841', '6.1865']
Outer characteristic polynomial of the knot is: t^7+32t^5+94t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1865']
2-strand cable arrow polynomial of the knot is: 2016*K1**4*K2 - 5360*K1**4 + 1376*K1**3*K2*K3 - 1952*K1**3*K3 - 128*K1**2*K2**4 + 800*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6992*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 1152*K1**2*K2*K4 + 10416*K1**2*K2 - 2256*K1**2*K3**2 - 128*K1**2*K3*K5 - 32*K1**2*K4**2 - 4860*K1**2 + 576*K1*K2**3*K3 - 1568*K1*K2**2*K3 - 256*K1*K2**2*K5 + 32*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9656*K1*K2*K3 + 2848*K1*K3*K4 + 280*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1112*K2**4 - 768*K2**2*K3**2 - 64*K2**2*K4**2 + 1760*K2**2*K4 - 4554*K2**2 + 840*K2*K3*K5 + 56*K2*K4*K6 - 64*K3**4 + 48*K3**2*K6 - 2876*K3**2 - 1062*K4**2 - 240*K5**2 - 22*K6**2 + 4964
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1865']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4352', 'vk6.4383', 'vk6.5674', 'vk6.5705', 'vk6.7743', 'vk6.7774', 'vk6.9225', 'vk6.9256', 'vk6.10494', 'vk6.10540', 'vk6.10637', 'vk6.10713', 'vk6.10744', 'vk6.10826', 'vk6.14623', 'vk6.15311', 'vk6.15436', 'vk6.16242', 'vk6.17980', 'vk6.24424', 'vk6.30173', 'vk6.30219', 'vk6.30316', 'vk6.30445', 'vk6.33945', 'vk6.34350', 'vk6.34404', 'vk6.43859', 'vk6.50430', 'vk6.50460', 'vk6.54209', 'vk6.63444']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O4U2O6O5U6U1U3
R3 orbit {'O1O2O3U4U5O4U2O6O5U6U1U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U3U4O5O4U2O6U5U6
Gauss code of K* O1O2O3U2U4U3O5O6U5O4U1U6
Gauss code of -K* O1O2O3U4U3O5U6O4O6U1U5U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 2 -1 1 -1],[ 1 0 1 2 0 2 -1],[ 0 -1 0 0 0 1 -1],[-2 -2 0 0 -3 0 -1],[ 1 0 0 3 0 1 0],[-1 -2 -1 0 -1 0 -1],[ 1 1 1 1 0 1 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 0 -1 -2 -3],[-1 0 0 -1 -1 -2 -1],[ 0 0 1 0 -1 -1 0],[ 1 1 1 1 0 1 0],[ 1 2 2 1 -1 0 0],[ 1 3 1 0 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,0,1,2,3,1,1,2,1,1,1,0,-1,0,0]
Phi over symmetry [-2,-1,0,1,1,1,0,0,1,2,3,1,1,2,1,1,1,0,-1,0,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,0,1,2,0,0,0,1,1,1,0,0,2,1]
Phi of K* [-2,-1,0,1,1,1,1,2,0,1,2,0,1,0,1,1,0,0,0,0,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,1,2,2,0,1,1,1,0,1,3,1,0,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+24t^4+65t^2+1
Outer characteristic polynomial t^7+32t^5+94t^3+4t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 8*K1*K2 + K1 + 3*K2 + 3*K3 + 4
2-strand cable arrow polynomial 2016*K1**4*K2 - 5360*K1**4 + 1376*K1**3*K2*K3 - 1952*K1**3*K3 - 128*K1**2*K2**4 + 800*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6992*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 1152*K1**2*K2*K4 + 10416*K1**2*K2 - 2256*K1**2*K3**2 - 128*K1**2*K3*K5 - 32*K1**2*K4**2 - 4860*K1**2 + 576*K1*K2**3*K3 - 1568*K1*K2**2*K3 - 256*K1*K2**2*K5 + 32*K1*K2*K3**3 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 9656*K1*K2*K3 + 2848*K1*K3*K4 + 280*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1112*K2**4 - 768*K2**2*K3**2 - 64*K2**2*K4**2 + 1760*K2**2*K4 - 4554*K2**2 + 840*K2*K3*K5 + 56*K2*K4*K6 - 64*K3**4 + 48*K3**2*K6 - 2876*K3**2 - 1062*K4**2 - 240*K5**2 - 22*K6**2 + 4964
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}]]
If K is slice False
Contact