Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1866

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,2,2,0,2,1,2,0,1,-1,-1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1866']
Arrow polynomial of the knot is: -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.239', '6.428', '6.470', '6.556', '6.700', '6.910', '6.962', '6.1006', '6.1013', '6.1038', '6.1207', '6.1224', '6.1225', '6.1269', '6.1270', '6.1308', '6.1319', '6.1320', '6.1323', '6.1485', '6.1551', '6.1579', '6.1581', '6.1660', '6.1672', '6.1679', '6.1711', '6.1719', '6.1732', '6.1745', '6.1748', '6.1827', '6.1836', '6.1838', '6.1850', '6.1866']
Outer characteristic polynomial of the knot is: t^7+34t^5+194t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1866']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 128*K1**4*K2 - 304*K1**4 + 288*K1**3*K2*K3 - 256*K1**3*K3 - 1024*K1**2*K2**4 + 1856*K1**2*K2**3 - 6032*K1**2*K2**2 - 352*K1**2*K2*K4 + 5432*K1**2*K2 - 272*K1**2*K3**2 - 4352*K1**2 + 2336*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1312*K1*K2**2*K3 - 288*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 6744*K1*K2*K3 - 96*K1*K2*K4*K5 + 760*K1*K3*K4 + 80*K1*K4*K5 + 24*K1*K5*K6 - 2120*K2**4 - 1616*K2**2*K3**2 - 112*K2**2*K4**2 + 1664*K2**2*K4 - 2460*K2**2 + 888*K2*K3*K5 + 112*K2*K4*K6 - 2060*K3**2 - 506*K4**2 - 156*K5**2 - 28*K6**2 + 3448
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1866']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71565', 'vk6.71674', 'vk6.72090', 'vk6.72305', 'vk6.74037', 'vk6.74598', 'vk6.76085', 'vk6.76795', 'vk6.77181', 'vk6.77278', 'vk6.77477', 'vk6.77644', 'vk6.79029', 'vk6.79605', 'vk6.80564', 'vk6.81014', 'vk6.81102', 'vk6.81142', 'vk6.81164', 'vk6.81212', 'vk6.81306', 'vk6.81453', 'vk6.82259', 'vk6.83505', 'vk6.83836', 'vk6.83979', 'vk6.85405', 'vk6.86328', 'vk6.87102', 'vk6.88023', 'vk6.88339', 'vk6.88970']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U4U5O6U1O4O5U2U6U3
R3 orbit {'O1O2O3U4U5O6U1O4O5U2U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3U1U4U2O5O6U3O4U5U6
Gauss code of K* O1O2O3U4U1U3O5O6U2O4U5U6
Gauss code of -K* O1O2O3U4U5O6U2O4O5U1U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 2 -1 1 0],[ 1 0 -1 1 1 2 0],[ 1 1 0 2 0 2 -1],[-2 -1 -2 0 -2 0 -2],[ 1 -1 0 2 0 1 1],[-1 -2 -2 0 -1 0 0],[ 0 0 1 2 -1 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -2 -1 -2 -2],[-1 0 0 0 -2 -1 -2],[ 0 2 0 0 0 -1 1],[ 1 1 2 0 0 1 -1],[ 1 2 1 1 -1 0 0],[ 1 2 2 -1 1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,2,1,2,2,0,2,1,2,0,1,-1,-1,1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,2,2,0,2,1,2,0,1,-1,-1,1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,2,0,1,-1,1,0,2,0,1,1,1,0,1]
Phi of K* [-2,-1,0,1,1,1,1,0,1,1,2,1,0,1,0,2,0,1,0,1,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,1,1,2,-1,0,2,1,-1,2,2,0,2,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 6z^2+23z+23
Enhanced Jones-Krushkal polynomial -2w^4z^2+8w^3z^2-2w^3z+25w^2z+23w
Inner characteristic polynomial t^6+26t^4+129t^2+1
Outer characteristic polynomial t^7+34t^5+194t^3+9t
Flat arrow polynomial -6*K1**2 - 4*K1*K2 + 2*K1 + 3*K2 + 2*K3 + 4
2-strand cable arrow polynomial -192*K1**4*K2**2 + 128*K1**4*K2 - 304*K1**4 + 288*K1**3*K2*K3 - 256*K1**3*K3 - 1024*K1**2*K2**4 + 1856*K1**2*K2**3 - 6032*K1**2*K2**2 - 352*K1**2*K2*K4 + 5432*K1**2*K2 - 272*K1**2*K3**2 - 4352*K1**2 + 2336*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1312*K1*K2**2*K3 - 288*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 6744*K1*K2*K3 - 96*K1*K2*K4*K5 + 760*K1*K3*K4 + 80*K1*K4*K5 + 24*K1*K5*K6 - 2120*K2**4 - 1616*K2**2*K3**2 - 112*K2**2*K4**2 + 1664*K2**2*K4 - 2460*K2**2 + 888*K2*K3*K5 + 112*K2*K4*K6 - 2060*K3**2 - 506*K4**2 - 156*K5**2 - 28*K6**2 + 3448
Genus of based matrix 1
Fillings of based matrix [[{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact