Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,2,1,2,0,1,-1,1,0,1,0,1,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1890'] |
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971'] |
Outer characteristic polynomial of the knot is: t^7+23t^5+63t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1890'] |
2-strand cable arrow polynomial of the knot is: 128*K1**4*K2 - 816*K1**4 - 32*K1**3*K3 + 256*K1**2*K2**3 - 3312*K1**2*K2**2 - 96*K1**2*K2*K4 + 6240*K1**2*K2 - 16*K1**2*K3**2 - 4708*K1**2 - 192*K1*K2**2*K3 + 3200*K1*K2*K3 + 176*K1*K3*K4 - 360*K2**4 + 360*K2**2*K4 - 2880*K2**2 - 828*K3**2 - 134*K4**2 + 3012 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1890'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73358', 'vk6.73391', 'vk6.73521', 'vk6.73569', 'vk6.73712', 'vk6.73831', 'vk6.74262', 'vk6.74888', 'vk6.75332', 'vk6.75528', 'vk6.75835', 'vk6.76439', 'vk6.78248', 'vk6.78310', 'vk6.78499', 'vk6.78624', 'vk6.78819', 'vk6.79314', 'vk6.80069', 'vk6.80096', 'vk6.80219', 'vk6.80258', 'vk6.80396', 'vk6.80779', 'vk6.81955', 'vk6.82686', 'vk6.84754', 'vk6.85054', 'vk6.85150', 'vk6.86525', 'vk6.87353', 'vk6.89447'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1U4O5U3O6U2O4U6U5 |
R3 orbit | {'O1O2O3U1U4O5U3O6U2O4U6U5'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U4U5O6U2O5U1O4U6U3 |
Gauss code of K* | O1O2U3O4U5O6U2O5O3U1U6U4 |
Gauss code of -K* | O1O2U3O4U2O5U1O3O6U5U4U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 1 0 1 0],[ 2 0 2 1 0 2 1],[ 0 -2 0 0 -1 2 0],[-1 -1 0 0 -1 0 -1],[ 0 0 1 1 0 0 0],[-1 -2 -2 0 0 0 0],[ 0 -1 0 1 0 0 0]] |
Primitive based matrix | [[ 0 1 1 0 0 0 -2],[-1 0 0 0 0 -2 -2],[-1 0 0 -1 -1 0 -1],[ 0 0 1 0 0 1 0],[ 0 0 1 0 0 0 -1],[ 0 2 0 -1 0 0 -2],[ 2 2 1 0 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,-1,0,0,0,2,0,0,0,2,2,1,1,0,1,0,-1,0,0,1,2] |
Phi over symmetry | [-2,0,0,0,1,1,0,1,2,1,2,0,1,-1,1,0,1,0,1,0,0] |
Phi of -K | [-2,0,0,0,1,1,0,1,2,1,2,0,1,-1,1,0,1,0,1,0,0] |
Phi of K* | [-1,-1,0,0,0,2,0,-1,1,1,1,1,0,0,2,-1,0,0,0,2,1] |
Phi of -K* | [-2,0,0,0,1,1,0,1,2,1,2,0,1,1,0,0,1,0,0,2,0] |
Symmetry type of based matrix | c |
u-polynomial | t^2-2t |
Normalized Jones-Krushkal polynomial | 4z^2+23z+31 |
Enhanced Jones-Krushkal polynomial | 4w^3z^2+23w^2z+31w |
Inner characteristic polynomial | t^6+17t^4+36t^2 |
Outer characteristic polynomial | t^7+23t^5+63t^3+5t |
Flat arrow polynomial | -6*K1**2 + 3*K2 + 4 |
2-strand cable arrow polynomial | 128*K1**4*K2 - 816*K1**4 - 32*K1**3*K3 + 256*K1**2*K2**3 - 3312*K1**2*K2**2 - 96*K1**2*K2*K4 + 6240*K1**2*K2 - 16*K1**2*K3**2 - 4708*K1**2 - 192*K1*K2**2*K3 + 3200*K1*K2*K3 + 176*K1*K3*K4 - 360*K2**4 + 360*K2**2*K4 - 2880*K2**2 - 828*K3**2 - 134*K4**2 + 3012 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{5, 6}, {1, 4}, {2, 3}]] |
If K is slice | False |