Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1891

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,0,-1,-1,1,2,1,1,0,0,-1,1,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1891']
Arrow polynomial of the knot is: -4*K1**2 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.5', '4.7', '4.10', '4.11', '6.142', '6.563', '6.606', '6.788', '6.892', '6.944', '6.949', '6.971', '6.1011', '6.1060', '6.1124', '6.1212', '6.1238', '6.1241', '6.1274', '6.1291', '6.1304', '6.1309', '6.1312', '6.1373', '6.1390', '6.1392', '6.1393', '6.1394', '6.1403', '6.1407', '6.1412', '6.1413', '6.1423', '6.1424', '6.1425', '6.1426', '6.1438', '6.1440', '6.1448', '6.1449', '6.1452', '6.1453', '6.1456', '6.1457', '6.1478', '6.1479', '6.1520', '6.1554', '6.1559', '6.1588', '6.1589', '6.1609', '6.1610', '6.1619', '6.1621', '6.1626', '6.1630', '6.1632', '6.1633', '6.1643', '6.1657', '6.1689', '6.1721', '6.1723', '6.1737', '6.1764', '6.1777', '6.1783', '6.1808', '6.1816', '6.1853', '6.1855', '6.1856', '6.1860', '6.1864', '6.1871', '6.1872', '6.1875', '6.1882', '6.1891', '6.1894', '6.1895', '6.1896', '6.1897', '6.1898', '6.1900', '6.1902', '6.1903', '6.1938', '6.1940', '6.1942', '6.1946', '6.1947', '6.1952', '6.1956', '6.1957', '6.1959', '6.1965', '6.1968', '6.1969', '6.1970', '6.1972', '6.1973', '6.1974', '6.2000', '6.2006', '6.2012', '6.2032', '6.2033', '6.2035', '6.2036', '6.2037', '6.2038', '6.2040', '6.2041', '6.2042', '6.2044', '6.2045', '6.2047', '6.2048', '6.2049', '6.2052', '6.2053', '6.2054', '6.2055', '6.2058', '6.2060', '6.2061', '6.2062', '6.2067', '6.2069', '6.2072', '6.2073', '6.2076', '6.2077', '6.2080']
Outer characteristic polynomial of the knot is: t^7+16t^5+44t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1891']
2-strand cable arrow polynomial of the knot is: 160*K1**4*K2 - 1472*K1**4 - 256*K1**3*K3 - 672*K1**2*K2**2 + 3032*K1**2*K2 - 1608*K1**2 + 1208*K1*K2*K3 - 16*K2**4 + 32*K2**2*K4 - 1320*K2**2 - 392*K3**2 - 12*K4**2 + 1314
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1891']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3623', 'vk6.3704', 'vk6.3897', 'vk6.4008', 'vk6.7049', 'vk6.7100', 'vk6.7277', 'vk6.7382', 'vk6.11387', 'vk6.12572', 'vk6.12685', 'vk6.19108', 'vk6.19155', 'vk6.19815', 'vk6.25721', 'vk6.25782', 'vk6.26252', 'vk6.26697', 'vk6.30993', 'vk6.31122', 'vk6.31173', 'vk6.31516', 'vk6.32177', 'vk6.32341', 'vk6.32760', 'vk6.37836', 'vk6.37893', 'vk6.39056', 'vk6.41316', 'vk6.44981', 'vk6.45812', 'vk6.48259', 'vk6.48440', 'vk6.52454', 'vk6.53344', 'vk6.58420', 'vk6.62944', 'vk6.63726', 'vk6.66209', 'vk6.66238']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U1O4U3O5U4O6U5U6
R3 orbit {'O1O2U1O3U4U2O5O6U3U5O4U6', 'O1O2O3U2U1O4U3O5U4O6U5U6'}
R3 orbit length 2
Gauss code of -K O1O2O3U4U5O4U6O5U1O6U3U2
Gauss code of K* O1O2U3O4U5O3U6O5O6U2U1U4
Gauss code of -K* O1O2U1O3U2O4U3O5O6U4U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 0 1],[ 1 0 0 2 1 0 0],[ 1 0 0 1 1 0 0],[-1 -2 -1 0 1 1 0],[ 0 -1 -1 -1 0 1 1],[ 0 0 0 -1 -1 0 1],[-1 0 0 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 0 1 1 -1 -2],[-1 0 0 -1 -1 0 0],[ 0 -1 1 0 1 -1 -1],[ 0 -1 1 -1 0 0 0],[ 1 1 0 1 0 0 0],[ 1 2 0 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,0,-1,-1,1,2,1,1,0,0,-1,1,1,0,0,0]
Phi over symmetry [-1,-1,0,0,1,1,0,-1,-1,1,2,1,1,0,0,-1,1,1,0,0,0]
Phi of -K [-1,-1,0,0,1,1,0,0,1,0,2,0,1,1,2,-1,2,0,2,0,0]
Phi of K* [-1,-1,0,0,1,1,0,0,0,2,2,2,2,0,1,-1,1,1,0,0,0]
Phi of -K* [-1,-1,0,0,1,1,0,0,1,0,1,0,1,0,2,-1,1,-1,1,-1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+15z+23
Enhanced Jones-Krushkal polynomial 2w^3z^2+15w^2z+23w
Inner characteristic polynomial t^6+12t^4+14t^2+1
Outer characteristic polynomial t^7+16t^5+44t^3+4t
Flat arrow polynomial -4*K1**2 + 2*K2 + 3
2-strand cable arrow polynomial 160*K1**4*K2 - 1472*K1**4 - 256*K1**3*K3 - 672*K1**2*K2**2 + 3032*K1**2*K2 - 1608*K1**2 + 1208*K1*K2*K3 - 16*K2**4 + 32*K2**2*K4 - 1320*K2**2 - 392*K3**2 - 12*K4**2 + 1314
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}]]
If K is slice False
Contact