Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1894

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,1,0,1,-1,0,1,1,-1,1,0,0,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1894']
Arrow polynomial of the knot is: -4*K1**2 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.5', '4.7', '4.10', '4.11', '6.142', '6.563', '6.606', '6.788', '6.892', '6.944', '6.949', '6.971', '6.1011', '6.1060', '6.1124', '6.1212', '6.1238', '6.1241', '6.1274', '6.1291', '6.1304', '6.1309', '6.1312', '6.1373', '6.1390', '6.1392', '6.1393', '6.1394', '6.1403', '6.1407', '6.1412', '6.1413', '6.1423', '6.1424', '6.1425', '6.1426', '6.1438', '6.1440', '6.1448', '6.1449', '6.1452', '6.1453', '6.1456', '6.1457', '6.1478', '6.1479', '6.1520', '6.1554', '6.1559', '6.1588', '6.1589', '6.1609', '6.1610', '6.1619', '6.1621', '6.1626', '6.1630', '6.1632', '6.1633', '6.1643', '6.1657', '6.1689', '6.1721', '6.1723', '6.1737', '6.1764', '6.1777', '6.1783', '6.1808', '6.1816', '6.1853', '6.1855', '6.1856', '6.1860', '6.1864', '6.1871', '6.1872', '6.1875', '6.1882', '6.1891', '6.1894', '6.1895', '6.1896', '6.1897', '6.1898', '6.1900', '6.1902', '6.1903', '6.1938', '6.1940', '6.1942', '6.1946', '6.1947', '6.1952', '6.1956', '6.1957', '6.1959', '6.1965', '6.1968', '6.1969', '6.1970', '6.1972', '6.1973', '6.1974', '6.2000', '6.2006', '6.2012', '6.2032', '6.2033', '6.2035', '6.2036', '6.2037', '6.2038', '6.2040', '6.2041', '6.2042', '6.2044', '6.2045', '6.2047', '6.2048', '6.2049', '6.2052', '6.2053', '6.2054', '6.2055', '6.2058', '6.2060', '6.2061', '6.2062', '6.2067', '6.2069', '6.2072', '6.2073', '6.2076', '6.2077', '6.2080']
Outer characteristic polynomial of the knot is: t^7+22t^5+75t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1894']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 1312*K1**4*K2 - 4752*K1**4 + 96*K1**3*K2*K3 - 896*K1**3*K3 + 320*K1**2*K2**3 - 4416*K1**2*K2**2 - 352*K1**2*K2*K4 + 8928*K1**2*K2 - 48*K1**2*K3**2 - 3872*K1**2 - 352*K1*K2**2*K3 + 5088*K1*K2*K3 + 400*K1*K3*K4 - 320*K2**4 + 616*K2**2*K4 - 3704*K2**2 - 1392*K3**2 - 288*K4**2 + 3694
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1894']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13939', 'vk6.13954', 'vk6.14035', 'vk6.14048', 'vk6.15010', 'vk6.15021', 'vk6.15132', 'vk6.15141', 'vk6.17452', 'vk6.17472', 'vk6.17482', 'vk6.23961', 'vk6.23975', 'vk6.23992', 'vk6.24006', 'vk6.33749', 'vk6.33822', 'vk6.33840', 'vk6.34295', 'vk6.36260', 'vk6.36262', 'vk6.43421', 'vk6.53875', 'vk6.53886', 'vk6.53916', 'vk6.54425', 'vk6.55589', 'vk6.55609', 'vk6.60079', 'vk6.60090', 'vk6.60120', 'vk6.65308']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U2U4O5U6O4U3O6U1U5
R3 orbit {'O1O2O3U2U4O5U6O4U3O6U1U5'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U3O5U1O6U5O4U6U2
Gauss code of K* O1O2U3O4U2O5U4O6O3U6U1U5
Gauss code of -K* O1O2U3O4U5O3U1O5O6U4U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 1 0 1 0],[ 1 0 -1 2 0 1 1],[ 1 1 0 1 1 1 0],[-1 -2 -1 0 -1 -1 0],[ 0 0 -1 1 0 2 -1],[-1 -1 -1 1 -2 0 -1],[ 0 -1 0 0 1 1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 -1 -2 -1 -1],[-1 -1 0 0 -1 -1 -2],[ 0 1 0 0 1 0 -1],[ 0 2 1 -1 0 -1 0],[ 1 1 1 0 1 0 1],[ 1 1 2 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,1,2,1,1,0,1,1,2,-1,0,1,1,0,-1]
Phi over symmetry [-1,-1,0,0,1,1,-1,0,1,0,1,-1,0,1,1,-1,1,0,0,1,-1]
Phi of -K [-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,1,0,-1,1,0,1]
Phi of K* [-1,-1,0,0,1,1,-1,0,1,0,1,-1,0,1,1,-1,1,0,0,1,-1]
Phi of -K* [-1,-1,0,0,1,1,-1,0,1,1,2,1,0,1,1,-1,2,1,1,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+18t^4+53t^2+9
Outer characteristic polynomial t^7+22t^5+75t^3+13t
Flat arrow polynomial -4*K1**2 + 2*K2 + 3
2-strand cable arrow polynomial -64*K1**4*K2**2 + 1312*K1**4*K2 - 4752*K1**4 + 96*K1**3*K2*K3 - 896*K1**3*K3 + 320*K1**2*K2**3 - 4416*K1**2*K2**2 - 352*K1**2*K2*K4 + 8928*K1**2*K2 - 48*K1**2*K3**2 - 3872*K1**2 - 352*K1*K2**2*K3 + 5088*K1*K2*K3 + 400*K1*K3*K4 - 320*K2**4 + 616*K2**2*K4 - 3704*K2**2 - 1392*K3**2 - 288*K4**2 + 3694
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {5}, {3, 4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {5}, {1, 4}, {2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {4}, {1, 3}]]
If K is slice False
Contact