Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1907

Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,1,3,1,2,1,2,1,1,0,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1907']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+31t^5+86t^3+19t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1907']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 352*K1**4*K2 - 656*K1**4 + 160*K1**3*K2*K3 - 64*K1**3*K3 + 1344*K1**2*K2**3 - 5040*K1**2*K2**2 - 544*K1**2*K2*K4 + 4760*K1**2*K2 - 48*K1**2*K3**2 - 3364*K1**2 + 704*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 64*K1*K2**2*K5 - 128*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4920*K1*K2*K3 + 392*K1*K3*K4 + 24*K1*K4*K5 + 8*K1*K5*K6 - 288*K2**6 + 672*K2**4*K4 - 3136*K2**4 - 1408*K2**2*K3**2 - 688*K2**2*K4**2 + 2464*K2**2*K4 - 1478*K2**2 + 712*K2*K3*K5 + 200*K2*K4*K6 - 1188*K3**2 - 556*K4**2 - 72*K5**2 - 10*K6**2 + 2818
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1907']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10137', 'vk6.10194', 'vk6.10337', 'vk6.10424', 'vk6.17665', 'vk6.17712', 'vk6.24232', 'vk6.24279', 'vk6.29920', 'vk6.29967', 'vk6.30030', 'vk6.30079', 'vk6.36496', 'vk6.36590', 'vk6.43593', 'vk6.43703', 'vk6.51619', 'vk6.51654', 'vk6.51699', 'vk6.51722', 'vk6.55695', 'vk6.55752', 'vk6.60265', 'vk6.60327', 'vk6.63334', 'vk6.63361', 'vk6.63382', 'vk6.63401', 'vk6.65405', 'vk6.65444', 'vk6.68545', 'vk6.68576']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U2U4O5O4O6U3U5U6
R3 orbit {'O1O2O3U1U2U4O5O4O6U3U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U2U4U5O6O4O5U1U3U6
Gauss code of K* O1O2O3U4U5U1O4O5O6U2U6U3
Gauss code of -K* O1O2O3U1U4U2O4O5O6U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 0 1 -1 2],[ 2 0 1 2 2 1 1],[ 0 -1 0 1 0 1 1],[ 0 -2 -1 0 0 0 2],[-1 -2 0 0 0 -1 1],[ 1 -1 -1 0 1 0 1],[-2 -1 -1 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 -1 -2],[-2 0 -1 -1 -2 -1 -1],[-1 1 0 0 0 -1 -2],[ 0 1 0 0 1 1 -1],[ 0 2 0 -1 0 0 -2],[ 1 1 1 -1 0 0 -1],[ 2 1 2 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,1,2,1,1,2,1,1,0,0,1,2,-1,-1,1,0,2,1]
Phi over symmetry [-2,-1,0,0,1,2,0,0,1,1,3,1,2,1,2,1,1,0,1,1,0]
Phi of -K [-2,-1,0,0,1,2,0,0,1,1,3,1,2,1,2,1,1,0,1,1,0]
Phi of K* [-2,-1,0,0,1,2,0,0,1,2,3,1,1,1,1,-1,1,0,2,1,0]
Phi of -K* [-2,-1,0,0,1,2,1,1,2,2,1,-1,0,1,1,1,0,1,0,2,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+5w^3z^2-8w^3z+24w^2z+21w
Inner characteristic polynomial t^6+21t^4+36t^2+4
Outer characteristic polynomial t^7+31t^5+86t^3+19t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -192*K1**4*K2**2 + 352*K1**4*K2 - 656*K1**4 + 160*K1**3*K2*K3 - 64*K1**3*K3 + 1344*K1**2*K2**3 - 5040*K1**2*K2**2 - 544*K1**2*K2*K4 + 4760*K1**2*K2 - 48*K1**2*K3**2 - 3364*K1**2 + 704*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 - 64*K1*K2**2*K5 - 128*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4920*K1*K2*K3 + 392*K1*K3*K4 + 24*K1*K4*K5 + 8*K1*K5*K6 - 288*K2**6 + 672*K2**4*K4 - 3136*K2**4 - 1408*K2**2*K3**2 - 688*K2**2*K4**2 + 2464*K2**2*K4 - 1478*K2**2 + 712*K2*K3*K5 + 200*K2*K4*K6 - 1188*K3**2 - 556*K4**2 - 72*K5**2 - 10*K6**2 + 2818
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}]]
If K is slice False
Contact