Gauss code |
O1O2O3O4O5U2O6U1U5U6U3U4 |
R3 orbit |
{'O1O2O3O4O5U2O6U1U5U6U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U3U6U1U5O6U4 |
Gauss code of K* |
O1O2O3O4O5U1U6U4U5U2O6U3 |
Gauss code of -K* |
O1O2O3O4O5U3O6U4U1U2U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 1 3 1 2],[ 4 0 0 4 5 2 2],[ 3 0 0 2 3 1 1],[-1 -4 -2 0 1 -1 1],[-3 -5 -3 -1 0 -1 1],[-1 -2 -1 1 1 0 1],[-2 -2 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 2 1 1 -3 -4],[-3 0 1 -1 -1 -3 -5],[-2 -1 0 -1 -1 -1 -2],[-1 1 1 0 1 -1 -2],[-1 1 1 -1 0 -2 -4],[ 3 3 1 1 2 0 0],[ 4 5 2 2 4 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,-1,3,4,-1,1,1,3,5,1,1,1,2,-1,1,2,2,4,0] |
Phi over symmetry |
[-4,-3,1,1,2,3,0,2,4,2,5,1,2,1,3,1,1,1,1,1,-1] |
Phi of -K |
[-4,-3,1,1,2,3,1,1,3,4,2,2,3,4,3,1,0,1,0,1,2] |
Phi of K* |
[-3,-2,-1,-1,3,4,2,1,1,3,2,0,0,4,4,-1,2,1,3,3,1] |
Phi of -K* |
[-4,-3,1,1,2,3,0,2,4,2,5,1,2,1,3,1,1,1,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
4w^4z-12w^3z+4w^3+13w^2z+7w |
Inner characteristic polynomial |
t^6+70t^4+23t^2 |
Outer characteristic polynomial |
t^7+110t^5+160t^3 |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 4*K1**2 - 4*K1*K2 - 2*K1*K3 - 4*K1 + K2 + 2 |
2-strand cable arrow polynomial |
-144*K1**4 - 384*K1**2*K2**4 + 480*K1**2*K2**3 - 1744*K1**2*K2**2 + 1344*K1**2*K2 - 16*K1**2*K3**2 - 1188*K1**2 + 992*K1*K2**3*K3 + 1896*K1*K2*K3 + 64*K1*K3*K4 - 704*K2**6 - 256*K2**4*K3**2 - 32*K2**4*K4**2 + 448*K2**4*K4 - 1376*K2**4 + 224*K2**3*K3*K5 + 32*K2**3*K4*K6 - 960*K2**2*K3**2 - 80*K2**2*K4**2 + 720*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 + 20*K2**2 + 456*K2*K3*K5 + 32*K2*K4*K6 + 8*K2*K5*K7 + 8*K3**2*K6 - 636*K3**2 - 110*K4**2 - 80*K5**2 - 12*K6**2 + 1068 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}]] |
If K is slice |
False |