Gauss code |
O1O2O3U1U2U4O5O6O4U3U6U5 |
R3 orbit |
{'O1O2O3U1U2U4O5O6O4U3U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U1U4U5O6O4O5U3U2U6 |
Gauss code of K* |
O1O2O3U4U5U1O4O5O6U3U2U6 |
Gauss code of -K* |
O1O2O3U4U2U1O4O5O6U3U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 2 0 0],[ 2 0 1 2 2 1 1],[ 0 -1 0 1 0 1 1],[ 0 -2 -1 0 0 1 0],[-2 -2 0 0 0 -1 0],[ 0 -1 -1 -1 1 0 0],[ 0 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 0 0 0 0 -2],[-2 0 0 0 0 -1 -2],[ 0 0 0 1 1 1 -1],[ 0 0 -1 0 0 1 -2],[ 0 0 -1 0 0 0 -1],[ 0 1 -1 -1 0 0 -1],[ 2 2 1 2 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,0,0,0,0,2,0,0,0,1,2,-1,-1,-1,1,0,-1,2,0,1,1] |
Phi over symmetry |
[-2,0,0,0,0,2,0,0,0,1,2,-1,-1,-1,1,0,-1,2,0,1,1] |
Phi of -K |
[-2,0,0,0,0,2,0,1,1,1,2,-1,0,1,2,0,1,1,1,2,2] |
Phi of K* |
[-2,0,0,0,0,2,1,2,2,2,2,-1,-1,0,1,-1,0,0,1,1,1] |
Phi of -K* |
[-2,0,0,0,0,2,1,1,1,2,2,-1,0,-1,1,1,1,0,0,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
3z^3+17z^2+29z+15 |
Enhanced Jones-Krushkal polynomial |
3w^4z^3+17w^3z^2+29w^2z+15 |
Inner characteristic polynomial |
t^6+16t^4+39t^2+9 |
Outer characteristic polynomial |
t^7+24t^5+95t^3+33t |
Flat arrow polynomial |
-8*K1**4 + 8*K1**2*K2 - 2*K2**2 + 3 |
2-strand cable arrow polynomial |
-128*K2**8 + 256*K2**6*K4 - 1216*K2**6 - 192*K2**4*K4**2 + 2272*K2**4*K4 - 5216*K2**4 - 576*K2**3*K6 + 64*K2**2*K4**3 - 672*K2**2*K4**2 + 4264*K2**2*K4 + 916*K2**2 + 248*K2*K4*K6 - 8*K4**4 - 864*K4**2 - 20*K6**2 + 870 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {5}, {1, 4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {3, 5}, {1, 4}, {2}]] |
If K is slice |
False |