Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,0,1,2,3,0,1,2,1,1,2,2,-1,0,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1914'] |
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 8*K1*K2 + K1 + 4*K2 + 3*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1209', '6.1245', '6.1509', '6.1541', '6.1704', '6.1778', '6.1914'] |
Outer characteristic polynomial of the knot is: t^7+32t^5+58t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1914'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 480*K1**4*K2 - 1920*K1**4 + 320*K1**3*K2*K3 - 512*K1**3*K3 + 256*K1**2*K2**3 - 2784*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 5600*K1**2*K2 - 1280*K1**2*K3**2 - 48*K1**2*K4**2 - 3988*K1**2 + 224*K1*K2**3*K3 - 992*K1*K2**2*K3 - 224*K1*K2**2*K5 + 160*K1*K2*K3**3 - 224*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 5384*K1*K2*K3 + 1680*K1*K3*K4 + 216*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 544*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 32*K2**2*K4**2 + 928*K2**2*K4 - 3282*K2**2 - 128*K2*K3**2*K4 + 744*K2*K3*K5 + 120*K2*K4*K6 - 160*K3**4 + 208*K3**2*K6 - 1984*K3**2 - 676*K4**2 - 244*K5**2 - 94*K6**2 + 3578 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1914'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4064', 'vk6.4095', 'vk6.5306', 'vk6.5337', 'vk6.7436', 'vk6.7463', 'vk6.8937', 'vk6.8968', 'vk6.10122', 'vk6.10289', 'vk6.10312', 'vk6.14556', 'vk6.15279', 'vk6.15406', 'vk6.15780', 'vk6.16195', 'vk6.29872', 'vk6.29903', 'vk6.33913', 'vk6.33996', 'vk6.34231', 'vk6.34381', 'vk6.48451', 'vk6.49153', 'vk6.50204', 'vk6.50229', 'vk6.51598', 'vk6.53956', 'vk6.54019', 'vk6.54180', 'vk6.54461', 'vk6.63317'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3U1U3U4O5O4O6U2U5U6 |
R3 orbit | {'O1O2O3U1U3U4O5O4O6U2U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3U2U4U5O4O6O5U1U3U6 |
Gauss code of K* | O1O2O3U4U1U5O4O5O6U2U6U3 |
Gauss code of -K* | O1O2O3U1U4U2O4O5O6U5U3U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 1 1 -1 2],[ 2 0 2 1 2 1 1],[ 1 -2 0 0 1 0 2],[-1 -1 0 0 -1 0 0],[-1 -2 -1 1 0 -1 1],[ 1 -1 0 0 1 0 1],[-2 -1 -2 0 -1 -1 0]] |
Primitive based matrix | [[ 0 2 1 1 -1 -1 -2],[-2 0 0 -1 -1 -2 -1],[-1 0 0 -1 0 0 -1],[-1 1 1 0 -1 -1 -2],[ 1 1 0 1 0 0 -1],[ 1 2 0 1 0 0 -2],[ 2 1 1 2 1 2 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,1,1,2,0,1,1,2,1,1,0,0,1,1,1,2,0,1,2] |
Phi over symmetry | [-2,-1,-1,1,1,2,-1,0,1,2,3,0,1,2,1,1,2,2,-1,0,1] |
Phi of -K | [-2,-1,-1,1,1,2,-1,0,1,2,3,0,1,2,1,1,2,2,-1,0,1] |
Phi of K* | [-2,-1,-1,1,1,2,0,1,1,2,3,1,1,1,1,2,2,2,0,-1,0] |
Phi of -K* | [-2,-1,-1,1,1,2,1,2,1,2,1,0,0,1,1,0,1,2,-1,0,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | z^2+18z+33 |
Enhanced Jones-Krushkal polynomial | w^3z^2+18w^2z+33w |
Inner characteristic polynomial | t^6+20t^4+26t^2+1 |
Outer characteristic polynomial | t^7+32t^5+58t^3+5t |
Flat arrow polynomial | 4*K1**3 - 8*K1**2 - 8*K1*K2 + K1 + 4*K2 + 3*K3 + 5 |
2-strand cable arrow polynomial | -64*K1**6 + 480*K1**4*K2 - 1920*K1**4 + 320*K1**3*K2*K3 - 512*K1**3*K3 + 256*K1**2*K2**3 - 2784*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 96*K1**2*K2*K4 + 5600*K1**2*K2 - 1280*K1**2*K3**2 - 48*K1**2*K4**2 - 3988*K1**2 + 224*K1*K2**3*K3 - 992*K1*K2**2*K3 - 224*K1*K2**2*K5 + 160*K1*K2*K3**3 - 224*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 5384*K1*K2*K3 + 1680*K1*K3*K4 + 216*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 544*K2**4 - 32*K2**3*K6 - 672*K2**2*K3**2 - 32*K2**2*K4**2 + 928*K2**2*K4 - 3282*K2**2 - 128*K2*K3**2*K4 + 744*K2*K3*K5 + 120*K2*K4*K6 - 160*K3**4 + 208*K3**2*K6 - 1984*K3**2 - 676*K4**2 - 244*K5**2 - 94*K6**2 + 3578 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}]] |
If K is slice | False |