Gauss code |
O1O2O3U1U3U4O5O4O6U5U6U2 |
R3 orbit |
{'O1O2O3U1U3U4O5O4O6U5U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U2U4U5O4O6O5U6U1U3 |
Gauss code of K* |
O1O2O3U4U3U5O4O5O6U1U6U2 |
Gauss code of -K* |
O1O2O3U2U4U3O4O5O6U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 1 1 -2 1],[ 2 0 2 1 2 0 0],[-1 -2 0 0 0 -2 1],[-1 -1 0 0 -1 0 0],[-1 -2 0 1 0 -2 0],[ 2 0 2 0 2 0 1],[-1 0 -1 0 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 1 -2 -2],[-1 0 1 0 0 -2 -2],[-1 -1 0 0 0 0 -1],[-1 0 0 0 1 -2 -2],[-1 0 0 -1 0 -1 0],[ 2 2 0 2 1 0 0],[ 2 2 1 2 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,-1,2,2,-1,0,0,2,2,0,0,0,1,-1,2,2,1,0,0] |
Phi over symmetry |
[-2,-2,1,1,1,1,0,0,1,2,2,1,0,2,2,0,-1,0,0,-1,0] |
Phi of -K |
[-2,-2,1,1,1,1,0,1,1,2,3,1,1,3,2,0,-1,0,0,-1,0] |
Phi of K* |
[-1,-1,-1,-1,2,2,-1,0,0,2,3,0,0,1,1,-1,3,2,1,1,0] |
Phi of -K* |
[-2,-2,1,1,1,1,0,0,1,2,2,1,0,2,2,0,-1,0,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
2t^2-4t |
Normalized Jones-Krushkal polynomial |
9z^2+30z+25 |
Enhanced Jones-Krushkal polynomial |
9w^3z^2+30w^2z+25w |
Inner characteristic polynomial |
t^6+20t^4+36t^2 |
Outer characteristic polynomial |
t^7+32t^5+62t^3+4t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 4*K1**2 - 8*K1*K2 - 4*K1*K3 - 2*K1 + 2*K2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial |
-1152*K1**4*K2**2 + 7680*K1**4*K2 - 9408*K1**4 - 768*K1**3*K2**2*K3 + 3072*K1**3*K2*K3 - 2688*K1**3*K3 - 256*K1**2*K2**4 + 4672*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 14624*K1**2*K2**2 + 768*K1**2*K2*K3**2 - 2336*K1**2*K2*K4 + 11664*K1**2*K2 - 2240*K1**2*K3**2 - 128*K1**2*K3*K5 - 64*K1**2*K4**2 - 2160*K1**2 + 1856*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 3840*K1*K2**2*K3 - 704*K1*K2**2*K5 + 256*K1*K2*K3**3 - 704*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 11152*K1*K2*K3 - 192*K1*K2*K4*K5 + 2496*K1*K3*K4 + 256*K1*K4*K5 + 48*K1*K5*K6 - 64*K2**6 - 32*K2**4*K4**2 + 256*K2**4*K4 - 2752*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 128*K2**3*K6 - 1952*K2**2*K3**2 - 64*K2**2*K3*K7 - 416*K2**2*K4**2 - 32*K2**2*K4*K8 + 2992*K2**2*K4 - 128*K2**2*K5**2 - 16*K2**2*K6**2 - 3404*K2**2 - 96*K2*K3**2*K4 + 1440*K2*K3*K5 + 384*K2*K4*K6 + 96*K2*K5*K7 + 16*K2*K6*K8 - 128*K3**4 + 80*K3**2*K6 - 2072*K3**2 - 812*K4**2 - 264*K5**2 - 84*K6**2 - 16*K7**2 - 2*K8**2 + 4028 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {4, 5}, {3}, {1, 2}]] |
If K is slice |
False |