Gauss code |
O1O2O3O4O5U2O6U1U5U6U4U3 |
R3 orbit |
{'O1O2O3O4O5U2O6U1U5U6U4U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U2U6U1U5O6U4 |
Gauss code of K* |
O1O2O3O4O5U1U6U5U4U2O6U3 |
Gauss code of -K* |
O1O2O3O4O5U3O6U4U2U1U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -3 2 2 1 2],[ 4 0 0 5 4 2 2],[ 3 0 0 3 2 1 1],[-2 -5 -3 0 0 -1 1],[-2 -4 -2 0 0 -1 1],[-1 -2 -1 1 1 0 1],[-2 -2 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 2 1 -3 -4],[-2 0 1 0 -1 -2 -4],[-2 -1 0 -1 -1 -1 -2],[-2 0 1 0 -1 -3 -5],[-1 1 1 1 0 -1 -2],[ 3 2 1 3 1 0 0],[ 4 4 2 5 2 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,-1,3,4,-1,0,1,2,4,1,1,1,2,1,3,5,1,2,0] |
Phi over symmetry |
[-4,-3,1,2,2,2,0,2,2,4,5,1,1,2,3,1,1,1,-1,-1,0] |
Phi of -K |
[-4,-3,1,2,2,2,1,3,1,2,4,3,2,3,4,0,0,0,0,-1,-1] |
Phi of K* |
[-2,-2,-2,-1,3,4,-1,-1,0,4,4,0,0,2,1,0,3,2,3,3,1] |
Phi of -K* |
[-4,-3,1,2,2,2,0,2,2,4,5,1,1,2,3,1,1,1,-1,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4+t^3-3t^2-t |
Normalized Jones-Krushkal polynomial |
6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+23w^2z+23w |
Inner characteristic polynomial |
t^6+69t^4+12t^2 |
Outer characteristic polynomial |
t^7+107t^5+135t^3+4t |
Flat arrow polynomial |
4*K1**3 - 6*K1*K2 - 2*K1*K3 + K2 + 2*K3 + K4 + 1 |
2-strand cable arrow polynomial |
-64*K1**4 + 32*K1**3*K2*K3 - 128*K1**3*K3 + 96*K1**2*K2**3 - 1664*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 32*K1**2*K2*K4 + 3672*K1**2*K2 - 224*K1**2*K3**2 - 3988*K1**2 + 512*K1*K2**3*K3 - 1472*K1*K2**2*K3 - 192*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 4632*K1*K2*K3 - 32*K1*K2*K4*K5 + 920*K1*K3*K4 + 224*K1*K4*K5 + 40*K1*K5*K6 - 32*K2**6 + 96*K2**4*K4 - 688*K2**4 + 32*K2**3*K3*K5 - 128*K2**3*K6 - 592*K2**2*K3**2 - 32*K2**2*K3*K7 - 24*K2**2*K4**2 + 1624*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 3544*K2**2 + 720*K2*K3*K5 + 160*K2*K4*K6 + 40*K2*K5*K7 + 8*K2*K6*K8 + 16*K3**2*K6 - 1984*K3**2 - 758*K4**2 - 300*K5**2 - 72*K6**2 - 8*K7**2 - 2*K8**2 + 3366 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |