Gauss code |
O1O2O3U1U4U5O4O5O6U3U2U6 |
R3 orbit |
{'O1O2O3U1U4U5O4O5O6U3U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3U2U3U4O5O6O4U1U6U5 |
Gauss code of K* |
O1O2O3U2U3U4O5O6O4U1U6U5 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 -1 1 2],[ 2 0 2 1 2 2 2],[ 0 -2 0 0 -1 1 2],[ 0 -1 0 0 -1 1 1],[ 1 -2 1 1 0 1 2],[-1 -2 -1 -1 -1 0 2],[-2 -2 -2 -1 -2 -2 0]] |
Primitive based matrix |
[[ 0 2 1 0 -1 -2],[-2 0 -2 -1 -2 -2],[-1 2 0 -1 -1 -2],[ 0 1 1 0 -1 -1],[ 1 2 1 1 0 -2],[ 2 2 2 1 2 0]] |
If based matrix primitive |
False |
Phi of primitive based matrix |
[-2,-1,0,1,2,2,1,2,2,1,1,2,1,1,2] |
Phi over symmetry |
[-2,-1,0,1,2,-1,1,1,2,0,1,1,0,1,-1] |
Phi of -K |
[-2,-1,0,1,2,-1,1,1,2,0,1,1,0,1,-1] |
Phi of K* |
[-2,-1,0,1,2,-1,1,1,2,0,1,1,0,1,-1] |
Phi of -K* |
[-2,-1,0,1,2,2,1,2,2,1,1,2,1,1,2] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
-z-1 |
Enhanced Jones-Krushkal polynomial |
-16w^3z+15w^2z-w |
Inner characteristic polynomial |
t^5+25t^3+30t |
Outer characteristic polynomial |
t^6+35t^4+50t^2 |
Flat arrow polynomial |
8*K1**3 - 4*K1*K2 - 4*K1 + 1 |
2-strand cable arrow polynomial |
-384*K1**2*K2**4 + 384*K1**2*K2**3 - 2848*K1**2*K2**2 + 1760*K1**2*K2 - 608*K1**2 + 256*K1*K2**3*K3 + 1632*K1*K2*K3 - 192*K2**6 + 128*K2**4*K4 - 1536*K2**4 - 32*K2**2*K3**2 - 16*K2**2*K4**2 + 896*K2**2*K4 + 336*K2**2 - 160*K3**2 - 80*K4**2 + 462 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}]] |
If K is slice |
True |