Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1931

Min(phi) over symmetries of the knot is: [-2,-1,1,2,-1,2,3,2,2,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1931', '6.1932', '7.40268', '7.40283']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^5+21t^3+45t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1931', '6.1932']
2-strand cable arrow polynomial of the knot is: -64*K1**4 + 192*K1**2*K2**3 - 1216*K1**2*K2**2 + 1552*K1**2*K2 - 32*K1**2*K4**2 - 1496*K1**2 + 128*K1*K2**3*K3 + 1392*K1*K2*K3 + 128*K1*K3*K4 + 48*K1*K4*K5 - 1344*K2**6 + 1024*K2**4*K4 - 1328*K2**4 - 224*K2**2*K3**2 - 272*K2**2*K4**2 + 1056*K2**2*K4 - 136*K2**2 + 112*K2*K3*K5 + 48*K2*K4*K6 - 488*K3**2 - 204*K4**2 - 32*K5**2 + 1154
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1931']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72616', 'vk6.72759', 'vk6.73075', 'vk6.73162', 'vk6.73791', 'vk6.73926', 'vk6.75733', 'vk6.75929', 'vk6.77867', 'vk6.77911', 'vk6.78011', 'vk6.78744', 'vk6.78935', 'vk6.80348', 'vk6.81183', 'vk6.81777', 'vk6.82483', 'vk6.87303', 'vk6.87899', 'vk6.88419']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3U1U4U3O5O6O4U2U5U6
R3 orbit {'O1O2O3U1U4U3O5O6O4U2U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3U4U1U5O4O6O5U2U3U6
Gauss code of K* O1O2O3U4U1U5O4O6O5U2U3U6
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 2 1 -1 1],[ 2 0 2 1 1 1 1],[ 1 -2 0 1 0 0 1],[-2 -1 -1 0 -2 -1 -1],[-1 -1 0 2 0 -1 0],[ 1 -1 0 1 1 0 1],[-1 -1 -1 1 0 -1 0]]
Primitive based matrix [[ 0 2 1 -1 -2],[-2 0 -2 -1 -1],[-1 2 0 0 -1],[ 1 1 0 0 -2],[ 2 1 1 2 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,-1,1,2,2,1,1,0,1,2]
Phi over symmetry [-2,-1,1,2,-1,2,3,2,2,-1]
Phi of -K [-2,-1,1,2,-1,2,3,2,2,-1]
Phi of K* [-2,-1,1,2,-1,2,3,2,2,-1]
Phi of -K* [-2,-1,1,2,2,1,1,0,1,2]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z+9
Enhanced Jones-Krushkal polynomial 8w^4z-12w^3z+8w^3+8w^2z+w
Inner characteristic polynomial t^4+11t^2+9
Outer characteristic polynomial t^5+21t^3+45t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -64*K1**4 + 192*K1**2*K2**3 - 1216*K1**2*K2**2 + 1552*K1**2*K2 - 32*K1**2*K4**2 - 1496*K1**2 + 128*K1*K2**3*K3 + 1392*K1*K2*K3 + 128*K1*K3*K4 + 48*K1*K4*K5 - 1344*K2**6 + 1024*K2**4*K4 - 1328*K2**4 - 224*K2**2*K3**2 - 272*K2**2*K4**2 + 1056*K2**2*K4 - 136*K2**2 + 112*K2*K3*K5 + 48*K2*K4*K6 - 488*K3**2 - 204*K4**2 - 32*K5**2 + 1154
Genus of based matrix 0
Fillings of based matrix [[{5, 6}, {2, 4}, {1, 3}]]
If K is slice True
Contact