Min(phi) over symmetries of the knot is: [-4,-3,0,1,3,3,0,3,1,4,5,1,0,2,3,0,1,2,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.194'] |
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 + 2*K2 + K3 + K4 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.62', '6.176', '6.181', '6.194', '6.228', '6.267', '6.268', '6.449'] |
Outer characteristic polynomial of the knot is: t^7+114t^5+207t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.194'] |
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 384*K1**3*K2*K3 - 704*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 896*K1**2*K2**2 + 384*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 192*K1**2*K2*K4 + 3080*K1**2*K2 - 1456*K1**2*K3**2 - 32*K1**2*K3*K5 - 3872*K1**2 + 288*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1248*K1*K2**2*K3 - 32*K1*K2**2*K5 + 128*K1*K2*K3**3 - 544*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5896*K1*K2*K3 + 2104*K1*K3*K4 + 64*K1*K4*K5 + 8*K1*K5*K6 + 16*K1*K6*K7 - 72*K2**4 - 1792*K2**2*K3**2 - 72*K2**2*K4**2 + 728*K2**2*K4 - 8*K2**2*K6**2 - 2986*K2**2 - 96*K2*K3**2*K4 + 1256*K2*K3*K5 + 56*K2*K4*K6 + 8*K2*K6*K8 - 128*K3**4 - 64*K3**2*K4**2 + 112*K3**2*K6 - 2368*K3**2 + 64*K3*K4*K7 - 716*K4**2 - 160*K5**2 - 46*K6**2 - 24*K7**2 - 2*K8**2 + 3108 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.194'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16930', 'vk6.17173', 'vk6.20222', 'vk6.21517', 'vk6.23326', 'vk6.23621', 'vk6.27422', 'vk6.29033', 'vk6.35364', 'vk6.35787', 'vk6.38832', 'vk6.41025', 'vk6.42841', 'vk6.43121', 'vk6.45597', 'vk6.47357', 'vk6.55084', 'vk6.55336', 'vk6.57061', 'vk6.58186', 'vk6.59479', 'vk6.59770', 'vk6.61582', 'vk6.62755', 'vk6.64926', 'vk6.65134', 'vk6.66680', 'vk6.67519', 'vk6.68221', 'vk6.68364', 'vk6.69331', 'vk6.70083'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U2O6U1U6U3U5U4 |
R3 orbit | {'O1O2O3O4O5U2O6U1U6U3U5U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U2U1U3U6U5O6U4 |
Gauss code of K* | O1O2O3O4O5U1U6U3U5U4O6U2 |
Gauss code of -K* | O1O2O3O4O5U4O6U2U1U3U6U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 -3 0 3 3 1],[ 4 0 0 3 5 4 1],[ 3 0 0 1 3 2 0],[ 0 -3 -1 0 2 1 0],[-3 -5 -3 -2 0 0 0],[-3 -4 -2 -1 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix | [[ 0 3 3 1 0 -3 -4],[-3 0 0 0 -1 -2 -4],[-3 0 0 0 -2 -3 -5],[-1 0 0 0 0 0 -1],[ 0 1 2 0 0 -1 -3],[ 3 2 3 0 1 0 0],[ 4 4 5 1 3 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-3,-1,0,3,4,0,0,1,2,4,0,2,3,5,0,0,1,1,3,0] |
Phi over symmetry | [-4,-3,0,1,3,3,0,3,1,4,5,1,0,2,3,0,1,2,0,0,0] |
Phi of -K | [-4,-3,0,1,3,3,1,1,4,2,3,2,4,3,4,1,1,2,2,2,0] |
Phi of K* | [-3,-3,-1,0,3,4,0,2,1,3,2,2,2,4,3,1,4,4,2,1,1] |
Phi of -K* | [-4,-3,0,1,3,3,0,3,1,4,5,1,0,2,3,0,1,2,0,0,0] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w |
Inner characteristic polynomial | t^6+70t^4+53t^2+1 |
Outer characteristic polynomial | t^7+114t^5+207t^3+9t |
Flat arrow polynomial | -2*K1**2 - 2*K1*K2 - 2*K1*K3 + K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial | -144*K1**4 + 384*K1**3*K2*K3 - 704*K1**3*K3 - 256*K1**2*K2**2*K3**2 - 896*K1**2*K2**2 + 384*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 192*K1**2*K2*K4 + 3080*K1**2*K2 - 1456*K1**2*K3**2 - 32*K1**2*K3*K5 - 3872*K1**2 + 288*K1*K2**3*K3 + 224*K1*K2**2*K3*K4 - 1248*K1*K2**2*K3 - 32*K1*K2**2*K5 + 128*K1*K2*K3**3 - 544*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5896*K1*K2*K3 + 2104*K1*K3*K4 + 64*K1*K4*K5 + 8*K1*K5*K6 + 16*K1*K6*K7 - 72*K2**4 - 1792*K2**2*K3**2 - 72*K2**2*K4**2 + 728*K2**2*K4 - 8*K2**2*K6**2 - 2986*K2**2 - 96*K2*K3**2*K4 + 1256*K2*K3*K5 + 56*K2*K4*K6 + 8*K2*K6*K8 - 128*K3**4 - 64*K3**2*K4**2 + 112*K3**2*K6 - 2368*K3**2 + 64*K3*K4*K7 - 716*K4**2 - 160*K5**2 - 46*K6**2 - 24*K7**2 - 2*K8**2 + 3108 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]] |
If K is slice | False |