| Min(phi) over symmetries of the knot is: [-2,0,0,1,1,0,1,1,2,1,0,0,1,1,0] |
| Flat knots (up to 7 crossings) with same phi are :['6.1943', '7.35039', '7.38530'] |
| Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4 |
| Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971'] |
| Outer characteristic polynomial of the knot is: t^6+15t^4+15t^2+1 |
| Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1943', '7.38530', '7.44816'] |
| 2-strand cable arrow polynomial of the knot is: -64*K1**6 + 2336*K1**4*K2 - 7616*K1**4 + 256*K1**3*K2*K3 - 1024*K1**3*K3 + 352*K1**2*K2**3 - 5040*K1**2*K2**2 - 288*K1**2*K2*K4 + 11416*K1**2*K2 - 64*K1**2*K3**2 - 3248*K1**2 - 352*K1*K2**2*K3 + 3944*K1*K2*K3 + 112*K1*K3*K4 - 376*K2**4 + 400*K2**2*K4 - 3624*K2**2 - 720*K3**2 - 62*K4**2 + 3660 |
| Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1943'] |
| Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16945', 'vk6.17187', 'vk6.20535', 'vk6.21936', 'vk6.23342', 'vk6.23636', 'vk6.27989', 'vk6.29456', 'vk6.35392', 'vk6.35813', 'vk6.39397', 'vk6.41590', 'vk6.42865', 'vk6.43144', 'vk6.45973', 'vk6.47649', 'vk6.55108', 'vk6.55368', 'vk6.57411', 'vk6.58586', 'vk6.59507', 'vk6.59805', 'vk6.62078', 'vk6.63060', 'vk6.64959', 'vk6.65166', 'vk6.66955', 'vk6.67816', 'vk6.68249', 'vk6.68391', 'vk6.69566', 'vk6.70263'] |
| The R3 orbit of minmal crossing diagrams contains: |
| The diagrammatic symmetry type of this knot is c. |
| The reverse -K is |
| The mirror image K* is |
| The reversed mirror image -K* is |
| The fillings (up to the first 10) associated to the algebraic genus: |
| Or click here to check the fillings |
| invariant | value |
|---|---|
| Gauss code | O1O2U1O3O4U5O6U4U2O5U3U6 |
| R3 orbit | {'O1O2U1O3O4U5O6U4U2O5U3U6'} |
| R3 orbit length | 1 |
| Gauss code of -K | O1O2U3O4O3U5U2O6U4U1O5U6 |
| Gauss code of K* | O1O2U3O4O5U6U2O6U4U1O3U5 |
| Gauss code of -K* | O1O2U3O4O5U1O3U5U2O6U4U6 |
| Diagrammatic symmetry type | c |
| Flat genus of the diagram | 3 |
| If K is checkerboard colorable | False |
| If K is almost classical | False |
| Based matrix from Gauss code | [[ 0 -1 0 0 0 -1 2],[ 1 0 1 1 0 0 1],[ 0 -1 0 0 0 -1 2],[ 0 -1 0 0 1 -1 1],[ 0 0 0 -1 0 0 0],[ 1 0 1 1 0 0 2],[-2 -1 -2 -1 0 -2 0]] |
| Primitive based matrix | [[ 0 2 0 0 -1 -1],[-2 0 0 -1 -1 -2],[ 0 0 0 -1 0 0],[ 0 1 1 0 -1 -1],[ 1 1 0 1 0 0],[ 1 2 0 1 0 0]] |
| If based matrix primitive | False |
| Phi of primitive based matrix | [-2,0,0,1,1,0,1,1,2,1,0,0,1,1,0] |
| Phi over symmetry | [-2,0,0,1,1,0,1,1,2,1,0,0,1,1,0] |
| Phi of -K | [-1,-1,0,0,2,0,0,1,1,0,1,2,-1,1,2] |
| Phi of K* | [-2,0,0,1,1,1,2,1,2,1,0,0,1,1,0] |
| Phi of -K* | [-1,-1,0,0,2,0,0,1,1,0,1,2,-1,0,1] |
| Symmetry type of based matrix | c |
| u-polynomial | -t^2+2t |
| Normalized Jones-Krushkal polynomial | 3z^2+24z+37 |
| Enhanced Jones-Krushkal polynomial | 3w^3z^2+24w^2z+37w |
| Inner characteristic polynomial | t^5+9t^3+6t |
| Outer characteristic polynomial | t^6+15t^4+15t^2+1 |
| Flat arrow polynomial | -6*K1**2 + 3*K2 + 4 |
| 2-strand cable arrow polynomial | -64*K1**6 + 2336*K1**4*K2 - 7616*K1**4 + 256*K1**3*K2*K3 - 1024*K1**3*K3 + 352*K1**2*K2**3 - 5040*K1**2*K2**2 - 288*K1**2*K2*K4 + 11416*K1**2*K2 - 64*K1**2*K3**2 - 3248*K1**2 - 352*K1*K2**2*K3 + 3944*K1*K2*K3 + 112*K1*K3*K4 - 376*K2**4 + 400*K2**2*K4 - 3624*K2**2 - 720*K3**2 - 62*K4**2 + 3660 |
| Genus of based matrix | 1 |
| Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{6}, {4, 5}, {1, 3}, {2}]] |
| If K is slice | False |