Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1943

Min(phi) over symmetries of the knot is: [-2,0,0,1,1,0,1,1,2,1,0,0,1,1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1943', '7.35039', '7.38530']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^6+15t^4+15t^2+1
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1943', '7.38530', '7.44816']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 2336*K1**4*K2 - 7616*K1**4 + 256*K1**3*K2*K3 - 1024*K1**3*K3 + 352*K1**2*K2**3 - 5040*K1**2*K2**2 - 288*K1**2*K2*K4 + 11416*K1**2*K2 - 64*K1**2*K3**2 - 3248*K1**2 - 352*K1*K2**2*K3 + 3944*K1*K2*K3 + 112*K1*K3*K4 - 376*K2**4 + 400*K2**2*K4 - 3624*K2**2 - 720*K3**2 - 62*K4**2 + 3660
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1943']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16945', 'vk6.17187', 'vk6.20535', 'vk6.21936', 'vk6.23342', 'vk6.23636', 'vk6.27989', 'vk6.29456', 'vk6.35392', 'vk6.35813', 'vk6.39397', 'vk6.41590', 'vk6.42865', 'vk6.43144', 'vk6.45973', 'vk6.47649', 'vk6.55108', 'vk6.55368', 'vk6.57411', 'vk6.58586', 'vk6.59507', 'vk6.59805', 'vk6.62078', 'vk6.63060', 'vk6.64959', 'vk6.65166', 'vk6.66955', 'vk6.67816', 'vk6.68249', 'vk6.68391', 'vk6.69566', 'vk6.70263']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3O4U5O6U4U2O5U3U6
R3 orbit {'O1O2U1O3O4U5O6U4U2O5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2U3O4O3U5U2O6U4U1O5U6
Gauss code of K* O1O2U3O4O5U6U2O6U4U1O3U5
Gauss code of -K* O1O2U3O4O5U1O3U5U2O6U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 0 -1 2],[ 1 0 1 1 0 0 1],[ 0 -1 0 0 0 -1 2],[ 0 -1 0 0 1 -1 1],[ 0 0 0 -1 0 0 0],[ 1 0 1 1 0 0 2],[-2 -1 -2 -1 0 -2 0]]
Primitive based matrix [[ 0 2 0 0 -1 -1],[-2 0 0 -1 -1 -2],[ 0 0 0 -1 0 0],[ 0 1 1 0 -1 -1],[ 1 1 0 1 0 0],[ 1 2 0 1 0 0]]
If based matrix primitive False
Phi of primitive based matrix [-2,0,0,1,1,0,1,1,2,1,0,0,1,1,0]
Phi over symmetry [-2,0,0,1,1,0,1,1,2,1,0,0,1,1,0]
Phi of -K [-1,-1,0,0,2,0,0,1,1,0,1,2,-1,1,2]
Phi of K* [-2,0,0,1,1,1,2,1,2,1,0,0,1,1,0]
Phi of -K* [-1,-1,0,0,2,0,0,1,1,0,1,2,-1,0,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^5+9t^3+6t
Outer characteristic polynomial t^6+15t^4+15t^2+1
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**6 + 2336*K1**4*K2 - 7616*K1**4 + 256*K1**3*K2*K3 - 1024*K1**3*K3 + 352*K1**2*K2**3 - 5040*K1**2*K2**2 - 288*K1**2*K2*K4 + 11416*K1**2*K2 - 64*K1**2*K3**2 - 3248*K1**2 - 352*K1*K2**2*K3 + 3944*K1*K2*K3 + 112*K1*K3*K4 - 376*K2**4 + 400*K2**2*K4 - 3624*K2**2 - 720*K3**2 - 62*K4**2 + 3660
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{6}, {4, 5}, {1, 3}, {2}]]
If K is slice False
Contact