Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1948

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,0,1,1,2,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1948']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+30t^5+45t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1948']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 384*K1**4*K2**2 + 1088*K1**4*K2 - 3200*K1**4 + 256*K1**3*K2*K3 - 576*K1**3*K3 + 1056*K1**2*K2**3 - 4720*K1**2*K2**2 - 384*K1**2*K2*K4 + 6600*K1**2*K2 - 32*K1**2*K3**2 - 2196*K1**2 - 448*K1*K2**2*K3 + 3528*K1*K2*K3 + 104*K1*K3*K4 - 824*K2**4 + 632*K2**2*K4 - 1816*K2**2 - 564*K3**2 - 86*K4**2 + 2092
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1948']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17016', 'vk6.17258', 'vk6.20236', 'vk6.21534', 'vk6.23430', 'vk6.23732', 'vk6.27449', 'vk6.29053', 'vk6.35501', 'vk6.35948', 'vk6.38868', 'vk6.41062', 'vk6.42925', 'vk6.43220', 'vk6.45625', 'vk6.47372', 'vk6.55204', 'vk6.55439', 'vk6.57066', 'vk6.58196', 'vk6.59595', 'vk6.59917', 'vk6.61591', 'vk6.62771', 'vk6.65003', 'vk6.65208', 'vk6.66693', 'vk6.67538', 'vk6.68281', 'vk6.68433', 'vk6.69340', 'vk6.70090']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U3O4O5U1O6U4U5O3U6U2
R3 orbit {'O1O2U3O4O5U1O6U4U5O3U6U2'}
R3 orbit length 1
Gauss code of -K O1O2U3O4O5U4U6O3U1U2O6U5
Gauss code of K* O1O2U3O4O5U6U5O3U1U2O6U4
Gauss code of -K* O1O2U3O4O5U2O6U4U5O3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 0 -1 1 1],[ 2 0 2 0 1 2 1],[-1 -2 0 0 -2 0 1],[ 0 0 0 0 0 0 -1],[ 1 -1 2 0 0 1 2],[-1 -2 0 0 -1 0 1],[-1 -1 -1 1 -2 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 0 -1 -2],[-1 -1 0 -1 1 -2 -1],[-1 0 1 0 0 -2 -2],[ 0 0 -1 0 0 0 0],[ 1 1 2 2 0 0 -1],[ 2 2 1 2 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,0,1,2,1,-1,2,1,0,2,2,0,0,1]
Phi over symmetry [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,0,1,1,2,0,-1,-1]
Phi of -K [-2,-1,0,1,1,1,0,2,1,1,2,1,0,1,0,1,1,2,0,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,2,0,2,0,1,0,1,1,1,1,1,2,0]
Phi of -K* [-2,-1,0,1,1,1,1,0,1,2,2,0,2,1,2,-1,0,0,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+22t^4+24t^2+4
Outer characteristic polynomial t^7+30t^5+45t^3+8t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -128*K1**6 - 384*K1**4*K2**2 + 1088*K1**4*K2 - 3200*K1**4 + 256*K1**3*K2*K3 - 576*K1**3*K3 + 1056*K1**2*K2**3 - 4720*K1**2*K2**2 - 384*K1**2*K2*K4 + 6600*K1**2*K2 - 32*K1**2*K3**2 - 2196*K1**2 - 448*K1*K2**2*K3 + 3528*K1*K2*K3 + 104*K1*K3*K4 - 824*K2**4 + 632*K2**2*K4 - 1816*K2**2 - 564*K3**2 - 86*K4**2 + 2092
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {1, 5}, {4}, {2, 3}]]
If K is slice False
Contact