Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.195

Min(phi) over symmetries of the knot is: [-4,-3,1,1,1,4,0,1,3,4,5,0,1,2,3,0,0,0,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.195']
Arrow polynomial of the knot is: -2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + 2*K4 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.126', '6.195', '6.367', '6.438', '6.869', '6.872', '6.896', '6.1147']
Outer characteristic polynomial of the knot is: t^7+114t^5+165t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.195']
2-strand cable arrow polynomial of the knot is: -96*K1**3*K3 + 256*K1**2*K2*K3**2 + 1112*K1**2*K2 - 2560*K1**2*K3**2 - 224*K1**2*K3*K5 - 48*K1**2*K6**2 - 2692*K1**2 - 704*K1*K2**2*K3 - 576*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4584*K1*K2*K3 - 32*K1*K2*K5*K6 + 3016*K1*K3*K4 + 240*K1*K4*K5 + 112*K1*K5*K6 + 56*K1*K6*K7 + 8*K1*K7*K8 - 1008*K2**2*K3**2 - 32*K2**2*K3*K7 - 8*K2**2*K4**2 + 504*K2**2*K4 - 16*K2**2*K6**2 - 2246*K2**2 + 1320*K2*K3*K5 + 96*K2*K4*K6 + 32*K2*K5*K7 + 16*K2*K6*K8 + 32*K3**2*K6 - 2344*K3**2 + 16*K3*K4*K7 + 8*K3*K5*K8 - 888*K4**2 - 384*K5**2 - 98*K6**2 - 28*K7**2 - 12*K8**2 + 2650
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.195']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16994', 'vk6.17237', 'vk6.20210', 'vk6.21496', 'vk6.23398', 'vk6.23707', 'vk6.27398', 'vk6.29019', 'vk6.35461', 'vk6.35905', 'vk6.38814', 'vk6.40993', 'vk6.42895', 'vk6.43196', 'vk6.45565', 'vk6.47345', 'vk6.55157', 'vk6.55404', 'vk6.57052', 'vk6.58162', 'vk6.59533', 'vk6.59878', 'vk6.61558', 'vk6.62733', 'vk6.64967', 'vk6.65174', 'vk6.66668', 'vk6.67502', 'vk6.68257', 'vk6.68413', 'vk6.69316', 'vk6.70074']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2O6U1U6U4U3U5
R3 orbit {'O1O2O3O4O5U2O6U1U6U4U3U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U1U3U2U6U5O6U4
Gauss code of K* O1O2O3O4O5U1U6U4U3U5O6U2
Gauss code of -K* O1O2O3O4O5U4O6U1U3U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -3 1 1 4 1],[ 4 0 0 4 3 5 1],[ 3 0 0 2 1 3 0],[-1 -4 -2 0 0 2 0],[-1 -3 -1 0 0 1 0],[-4 -5 -3 -2 -1 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 4 1 1 1 -3 -4],[-4 0 0 -1 -2 -3 -5],[-1 0 0 0 0 0 -1],[-1 1 0 0 0 -1 -3],[-1 2 0 0 0 -2 -4],[ 3 3 0 1 2 0 0],[ 4 5 1 3 4 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-1,-1,-1,3,4,0,1,2,3,5,0,0,0,1,0,1,3,2,4,0]
Phi over symmetry [-4,-3,1,1,1,4,0,1,3,4,5,0,1,2,3,0,0,0,0,1,2]
Phi of -K [-4,-3,1,1,1,4,1,1,2,4,3,2,3,4,4,0,0,1,0,2,3]
Phi of K* [-4,-1,-1,-1,3,4,1,2,3,4,3,0,0,2,1,0,3,2,4,4,1]
Phi of -K* [-4,-3,1,1,1,4,0,1,3,4,5,0,1,2,3,0,0,0,0,1,2]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 3z^2+16z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+5w^3z^2-6w^3z+22w^2z+21w
Inner characteristic polynomial t^6+70t^4+47t^2
Outer characteristic polynomial t^7+114t^5+165t^3+7t
Flat arrow polynomial -2*K1*K2 - 4*K1*K3 + K1 + 2*K2 + K3 + 2*K4 + 1
2-strand cable arrow polynomial -96*K1**3*K3 + 256*K1**2*K2*K3**2 + 1112*K1**2*K2 - 2560*K1**2*K3**2 - 224*K1**2*K3*K5 - 48*K1**2*K6**2 - 2692*K1**2 - 704*K1*K2**2*K3 - 576*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 4584*K1*K2*K3 - 32*K1*K2*K5*K6 + 3016*K1*K3*K4 + 240*K1*K4*K5 + 112*K1*K5*K6 + 56*K1*K6*K7 + 8*K1*K7*K8 - 1008*K2**2*K3**2 - 32*K2**2*K3*K7 - 8*K2**2*K4**2 + 504*K2**2*K4 - 16*K2**2*K6**2 - 2246*K2**2 + 1320*K2*K3*K5 + 96*K2*K4*K6 + 32*K2*K5*K7 + 16*K2*K6*K8 + 32*K3**2*K6 - 2344*K3**2 + 16*K3*K4*K7 + 8*K3*K5*K8 - 888*K4**2 - 384*K5**2 - 98*K6**2 - 28*K7**2 - 12*K8**2 + 2650
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact