Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1961

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,0,1,2,0,2,0,1,0,0,-1,1,0,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1961']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+27t^5+58t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1961']
2-strand cable arrow polynomial of the knot is: -640*K1**6 + 1632*K1**4*K2 - 7088*K1**4 + 160*K1**3*K2*K3 - 800*K1**3*K3 - 2752*K1**2*K2**2 - 224*K1**2*K2*K4 + 10232*K1**2*K2 - 144*K1**2*K3**2 - 3032*K1**2 - 64*K1*K2**2*K3 + 3416*K1*K2*K3 + 296*K1*K3*K4 - 56*K2**4 + 200*K2**2*K4 - 3696*K2**2 - 992*K3**2 - 146*K4**2 + 3696
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1961']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4768', 'vk6.4788', 'vk6.5103', 'vk6.5123', 'vk6.6338', 'vk6.6765', 'vk6.6785', 'vk6.8295', 'vk6.8307', 'vk6.8746', 'vk6.9669', 'vk6.9681', 'vk6.9978', 'vk6.9990', 'vk6.21004', 'vk6.21019', 'vk6.22426', 'vk6.22443', 'vk6.28456', 'vk6.40232', 'vk6.40247', 'vk6.42161', 'vk6.46730', 'vk6.46745', 'vk6.48807', 'vk6.49023', 'vk6.49043', 'vk6.49843', 'vk6.49863', 'vk6.51509', 'vk6.58965', 'vk6.69805']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3O4U5U6O5U3O6U2U4
R3 orbit {'O1O2U1O3O4U5U6O5U3O6U2U4'}
R3 orbit length 1
Gauss code of -K O1O2U3O4O3U1U4O5U2O6U5U6
Gauss code of K* O1O2U1O3U2O4O5U6U4O6U3U5
Gauss code of -K* O1O2U3O4U5O3O5U1U4O6U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 2 -1 0],[ 1 0 1 0 1 1 1],[ 0 -1 0 1 2 -1 0],[ 0 0 -1 0 0 0 1],[-2 -1 -2 0 0 -3 -1],[ 1 -1 1 0 3 0 0],[ 0 -1 0 -1 1 0 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 0 -1 -2 -1 -3],[ 0 0 0 1 -1 0 0],[ 0 1 -1 0 0 -1 0],[ 0 2 1 0 0 -1 -1],[ 1 1 0 1 1 0 1],[ 1 3 0 0 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,0,1,2,1,3,-1,1,0,0,0,1,0,1,1,-1]
Phi over symmetry [-2,0,0,0,1,1,0,1,2,0,2,0,1,0,0,-1,1,0,1,1,-1]
Phi of -K [-1,-1,0,0,0,2,-1,0,0,1,2,0,1,1,0,0,-1,0,1,1,2]
Phi of K* [-2,0,0,0,1,1,0,1,2,0,2,0,1,0,0,-1,1,0,1,1,-1]
Phi of -K* [-1,-1,0,0,0,2,-1,0,0,1,3,0,1,1,1,1,-1,0,0,1,2]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 21z+43
Enhanced Jones-Krushkal polynomial 21w^2z+43w
Inner characteristic polynomial t^6+21t^4+43t^2+4
Outer characteristic polynomial t^7+27t^5+58t^3+7t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -640*K1**6 + 1632*K1**4*K2 - 7088*K1**4 + 160*K1**3*K2*K3 - 800*K1**3*K3 - 2752*K1**2*K2**2 - 224*K1**2*K2*K4 + 10232*K1**2*K2 - 144*K1**2*K3**2 - 3032*K1**2 - 64*K1*K2**2*K3 + 3416*K1*K2*K3 + 296*K1*K3*K4 - 56*K2**4 + 200*K2**2*K4 - 3696*K2**2 - 992*K3**2 - 146*K4**2 + 3696
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact