Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1962

Min(phi) over symmetries of the knot is: [-2,0,0,0,1,1,1,1,1,1,1,-1,0,1,1,0,0,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.1962']
Arrow polynomial of the knot is: -10*K1**2 + 5*K2 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.947', '6.1027', '6.1399', '6.1430', '6.1433', '6.1442', '6.1465', '6.1469', '6.1476', '6.1505', '6.1529', '6.1606', '6.1612', '6.1613', '6.1616', '6.1649', '6.1694', '6.1736', '6.1768', '6.1771', '6.1774', '6.1884', '6.1886', '6.1887', '6.1889', '6.1960', '6.1962']
Outer characteristic polynomial of the knot is: t^7+15t^5+24t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1962']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 2016*K1**4*K2 - 6160*K1**4 + 32*K1**3*K2*K3 - 1696*K1**3*K3 + 768*K1**2*K2**3 - 6368*K1**2*K2**2 - 576*K1**2*K2*K4 + 12528*K1**2*K2 - 80*K1**2*K3**2 - 5676*K1**2 - 992*K1*K2**2*K3 + 7472*K1*K2*K3 + 784*K1*K3*K4 - 776*K2**4 + 1232*K2**2*K4 - 5040*K2**2 - 1988*K3**2 - 502*K4**2 + 5084
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1962']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16933', 'vk6.17175', 'vk6.20547', 'vk6.21948', 'vk6.23330', 'vk6.23624', 'vk6.28001', 'vk6.29468', 'vk6.35376', 'vk6.35797', 'vk6.39413', 'vk6.41606', 'vk6.42849', 'vk6.43128', 'vk6.45989', 'vk6.47665', 'vk6.55096', 'vk6.55352', 'vk6.57427', 'vk6.58598', 'vk6.59495', 'vk6.59789', 'vk6.62094', 'vk6.63072', 'vk6.64947', 'vk6.65154', 'vk6.66967', 'vk6.67828', 'vk6.68237', 'vk6.68379', 'vk6.69578', 'vk6.70275']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3O4U5U2O6U3O5U6U4
R3 orbit {'O1O2U1O3O4U5U2O6U3O5U6U4'}
R3 orbit length 1
Gauss code of -K O1O2U3O4O3U1U5O6U2O5U4U6
Gauss code of K* O1O2U3O4U1O3O5U6U2O6U4U5
Gauss code of -K* O1O2U3O4U2O5O3U1U4O6U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 2 -1 0],[ 1 0 1 1 1 0 0],[ 0 -1 0 1 1 -1 0],[ 0 -1 -1 0 1 0 0],[-2 -1 -1 -1 0 -1 -1],[ 1 0 1 0 1 0 0],[ 0 0 0 0 1 0 0]]
Primitive based matrix [[ 0 2 0 0 0 -1 -1],[-2 0 -1 -1 -1 -1 -1],[ 0 1 0 1 0 -1 -1],[ 0 1 -1 0 0 0 -1],[ 0 1 0 0 0 0 0],[ 1 1 1 0 0 0 0],[ 1 1 1 1 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,0,0,0,1,1,1,1,1,1,1,-1,0,1,1,0,0,1,0,0,0]
Phi over symmetry [-2,0,0,0,1,1,1,1,1,1,1,-1,0,1,1,0,0,1,0,0,0]
Phi of -K [-1,-1,0,0,0,2,0,0,0,1,2,0,1,1,2,-1,0,1,0,1,1]
Phi of K* [-2,0,0,0,1,1,1,1,1,2,2,-1,0,0,1,0,0,0,1,1,0]
Phi of -K* [-1,-1,0,0,0,2,0,0,0,1,1,0,1,1,1,0,0,1,-1,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+9t^4+11t^2+1
Outer characteristic polynomial t^7+15t^5+24t^3+5t
Flat arrow polynomial -10*K1**2 + 5*K2 + 6
2-strand cable arrow polynomial -64*K1**6 + 2016*K1**4*K2 - 6160*K1**4 + 32*K1**3*K2*K3 - 1696*K1**3*K3 + 768*K1**2*K2**3 - 6368*K1**2*K2**2 - 576*K1**2*K2*K4 + 12528*K1**2*K2 - 80*K1**2*K3**2 - 5676*K1**2 - 992*K1*K2**2*K3 + 7472*K1*K2*K3 + 784*K1*K3*K4 - 776*K2**4 + 1232*K2**2*K4 - 5040*K2**2 - 1988*K3**2 - 502*K4**2 + 5084
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]]
If K is slice False
Contact