Gauss code |
O1O2O3O4O5U2O6U3U1U5U6U4 |
R3 orbit |
{'O1O2O3O4O5U2O6U3U1U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U2U6U1U5U3O6U4 |
Gauss code of K* |
O1O2O3O4O5U2U6U1U5U3O6U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -3 -2 3 2 3],[ 3 0 -1 1 5 3 3],[ 3 1 0 1 3 2 2],[ 2 -1 -1 0 3 1 2],[-3 -5 -3 -3 0 -1 1],[-2 -3 -2 -1 1 0 1],[-3 -3 -2 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 3 2 -2 -3 -3],[-3 0 1 -1 -3 -3 -5],[-3 -1 0 -1 -2 -2 -3],[-2 1 1 0 -1 -2 -3],[ 2 3 2 1 0 -1 -1],[ 3 3 2 2 1 0 1],[ 3 5 3 3 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-2,2,3,3,-1,1,3,3,5,1,2,2,3,1,2,3,1,1,-1] |
Phi over symmetry |
[-3,-3,-2,2,3,3,-1,0,3,3,4,0,2,1,3,3,2,3,0,0,-1] |
Phi of -K |
[-3,-3,-2,2,3,3,-1,0,3,3,4,0,2,1,3,3,2,3,0,0,-1] |
Phi of K* |
[-3,-3,-2,2,3,3,-1,0,3,3,4,0,2,1,3,3,2,3,0,0,-1] |
Phi of -K* |
[-3,-3,-2,2,3,3,-1,1,3,3,5,1,2,2,3,1,2,3,1,1,-1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
6z^2+26z+29 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+26w^2z+29w |
Inner characteristic polynomial |
t^6+80t^4+28t^2+1 |
Outer characteristic polynomial |
t^7+124t^5+176t^3+7t |
Flat arrow polynomial |
16*K1**3 - 8*K1**2 - 8*K1*K2 - 8*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-736*K1**4 - 64*K1**3*K3 - 512*K1**2*K2**4 + 1728*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7456*K1**2*K2**2 - 512*K1**2*K2*K4 + 10112*K1**2*K2 - 32*K1**2*K3**2 - 64*K1**2*K4**2 - 8184*K1**2 + 960*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 2112*K1*K2**2*K3 - 256*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 9344*K1*K2*K3 + 976*K1*K3*K4 + 144*K1*K4*K5 - 128*K2**6 + 128*K2**4*K4 - 3072*K2**4 - 1152*K2**2*K3**2 - 192*K2**2*K4**2 + 3216*K2**2*K4 - 5288*K2**2 - 64*K2*K3**2*K4 + 752*K2*K3*K5 + 160*K2*K4*K6 - 2776*K3**2 - 912*K4**2 - 160*K5**2 - 32*K6**2 + 6118 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}]] |
If K is slice |
True |