Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2002

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,1,0,1,0,0,1,1,1,-1,0,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.2002']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+22t^5+60t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2002']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 1536*K1**4*K2 - 4256*K1**4 + 160*K1**3*K2*K3 - 448*K1**3*K3 + 96*K1**2*K2**3 - 4352*K1**2*K2**2 - 64*K1**2*K2*K4 + 8616*K1**2*K2 - 96*K1**2*K3**2 - 3968*K1**2 - 96*K1*K2**2*K3 + 3672*K1*K2*K3 + 112*K1*K3*K4 - 160*K2**4 + 144*K2**2*K4 - 3312*K2**2 - 848*K3**2 - 52*K4**2 + 3378
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2002']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4429', 'vk6.4526', 'vk6.5811', 'vk6.5940', 'vk6.7872', 'vk6.7981', 'vk6.9290', 'vk6.9411', 'vk6.10154', 'vk6.10227', 'vk6.10368', 'vk6.17887', 'vk6.17950', 'vk6.18272', 'vk6.18607', 'vk6.24390', 'vk6.25162', 'vk6.30045', 'vk6.30108', 'vk6.36882', 'vk6.37340', 'vk6.43825', 'vk6.44103', 'vk6.44426', 'vk6.48634', 'vk6.50531', 'vk6.50618', 'vk6.51136', 'vk6.51665', 'vk6.55849', 'vk6.56075', 'vk6.65513']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3U4O5U3U6O4O6U2U5
R3 orbit {'O1O2U1O3U4O5U3U6O4O6U2U5'}
R3 orbit length 1
Gauss code of -K O1O2U3U1O4O5U4U6O3U5O6U2
Gauss code of K* O1O2U3U2O4O5U6U4O6U1O3U5
Gauss code of -K* O1O2U3O4U2O5U6U5O3O6U1U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 0 -1 1 1],[ 1 0 1 0 1 1 1],[ 0 -1 0 1 -2 1 1],[ 0 0 -1 0 0 0 1],[ 1 -1 2 0 0 2 1],[-1 -1 -1 0 -2 0 -1],[-1 -1 -1 -1 -1 1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 -1 -1 -1 -1],[-1 -1 0 0 -1 -1 -2],[ 0 1 0 0 -1 0 0],[ 0 1 1 1 0 -1 -2],[ 1 1 1 0 1 0 1],[ 1 1 2 0 2 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,1,1,1,1,0,1,1,2,1,0,0,1,2,-1]
Phi over symmetry [-1,-1,0,0,1,1,-1,0,1,0,1,0,0,1,1,1,-1,0,1,1,-1]
Phi of -K [-1,-1,0,0,1,1,-1,0,1,1,1,-1,1,0,1,-1,0,0,1,0,1]
Phi of K* [-1,-1,0,0,1,1,-1,0,1,0,1,0,0,1,1,1,-1,0,1,1,-1]
Phi of -K* [-1,-1,0,0,1,1,-1,0,2,1,2,0,1,1,1,-1,1,0,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+18t^4+44t^2+1
Outer characteristic polynomial t^7+22t^5+60t^3+4t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**4*K2**2 + 1536*K1**4*K2 - 4256*K1**4 + 160*K1**3*K2*K3 - 448*K1**3*K3 + 96*K1**2*K2**3 - 4352*K1**2*K2**2 - 64*K1**2*K2*K4 + 8616*K1**2*K2 - 96*K1**2*K3**2 - 3968*K1**2 - 96*K1*K2**2*K3 + 3672*K1*K2*K3 + 112*K1*K3*K4 - 160*K2**4 + 144*K2**2*K4 - 3312*K2**2 - 848*K3**2 - 52*K4**2 + 3378
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {1, 5}, {2, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}]]
If K is slice False
Contact