Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2005

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,-1,1,1,2,0,0,1,1,-1,0,0,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.2005', '7.45410']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+20t^5+39t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2005']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 128*K1**4*K2**2 + 3136*K1**4*K2 - 6720*K1**4 + 128*K1**3*K2*K3 - 1184*K1**3*K3 + 320*K1**2*K2**3 - 6336*K1**2*K2**2 - 160*K1**2*K2*K4 + 11840*K1**2*K2 - 32*K1**2*K3**2 - 4616*K1**2 - 160*K1*K2**2*K3 + 4928*K1*K2*K3 + 80*K1*K3*K4 - 256*K2**4 + 256*K2**2*K4 - 4160*K2**2 - 968*K3**2 - 64*K4**2 + 4222
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2005']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4831', 'vk6.5176', 'vk6.6395', 'vk6.6828', 'vk6.8356', 'vk6.8788', 'vk6.9724', 'vk6.10029', 'vk6.11632', 'vk6.11985', 'vk6.12974', 'vk6.20455', 'vk6.20724', 'vk6.21808', 'vk6.27843', 'vk6.29351', 'vk6.31435', 'vk6.32609', 'vk6.39265', 'vk6.39764', 'vk6.41443', 'vk6.46328', 'vk6.47574', 'vk6.47903', 'vk6.49070', 'vk6.49902', 'vk6.51322', 'vk6.51541', 'vk6.53239', 'vk6.57326', 'vk6.62016', 'vk6.64316']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3U4O5U6U3O6O4U2U5
R3 orbit {'O1O2U1O3U4O5U6U3O6O4U2U5'}
R3 orbit length 1
Gauss code of -K O1O2U3U1O4O5U6U5O3U4O6U2
Gauss code of K* O1O2U1U3O4O5U6U4O6U2O3U5
Gauss code of -K* O1O2U3O4U1O5U6U5O3O6U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 1 0 1 -1],[ 1 0 1 0 1 1 1],[ 0 -1 0 2 -1 1 -1],[-1 0 -2 0 0 -1 -1],[ 0 -1 1 0 0 1 -1],[-1 -1 -1 1 -1 0 -1],[ 1 -1 1 1 1 1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 -1 -1 -1 -1],[-1 -1 0 0 -2 0 -1],[ 0 1 0 0 1 -1 -1],[ 0 1 2 -1 0 -1 -1],[ 1 1 0 1 1 0 1],[ 1 1 1 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,1,1,1,1,0,2,0,1,-1,1,1,1,1,-1]
Phi over symmetry [-1,-1,0,0,1,1,-1,-1,1,1,2,0,0,1,1,-1,0,0,0,0,-1]
Phi of -K [-1,-1,0,0,1,1,-1,0,0,1,2,0,0,1,1,-1,0,1,0,-1,-1]
Phi of K* [-1,-1,0,0,1,1,-1,-1,1,1,2,0,0,1,1,-1,0,0,0,0,-1]
Phi of -K* [-1,-1,0,0,1,1,-1,1,1,1,1,1,1,0,1,-1,2,1,0,1,-1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 3z^2+24z+37
Enhanced Jones-Krushkal polynomial 3w^3z^2+24w^2z+37w
Inner characteristic polynomial t^6+16t^4+27t^2+4
Outer characteristic polynomial t^7+20t^5+39t^3+8t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -128*K1**6 - 128*K1**4*K2**2 + 3136*K1**4*K2 - 6720*K1**4 + 128*K1**3*K2*K3 - 1184*K1**3*K3 + 320*K1**2*K2**3 - 6336*K1**2*K2**2 - 160*K1**2*K2*K4 + 11840*K1**2*K2 - 32*K1**2*K3**2 - 4616*K1**2 - 160*K1*K2**2*K3 + 4928*K1*K2*K3 + 80*K1*K3*K4 - 256*K2**4 + 256*K2**2*K4 - 4160*K2**2 - 968*K3**2 - 64*K4**2 + 4222
Genus of based matrix 0
Fillings of based matrix [[{5, 6}, {2, 4}, {1, 3}]]
If K is slice True
Contact