Min(phi) over symmetries of the knot is: [-1,0,0,0,0,1,-1,0,1,2,1,-1,1,0,0,-1,-2,0,1,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.2013'] |
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063'] |
Outer characteristic polynomial of the knot is: t^7+19t^5+69t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2013'] |
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 544*K1**4*K2 - 4928*K1**4 - 288*K1**3*K3 - 2784*K1**2*K2**2 + 8712*K1**2*K2 - 3284*K1**2 + 2776*K1*K2*K3 - 128*K2**4 + 128*K2**2*K4 - 3152*K2**2 - 684*K3**2 - 32*K4**2 + 3182 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2013'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16559', 'vk6.16652', 'vk6.18144', 'vk6.18480', 'vk6.22962', 'vk6.23083', 'vk6.24603', 'vk6.25016', 'vk6.34959', 'vk6.35080', 'vk6.36734', 'vk6.37153', 'vk6.42532', 'vk6.42643', 'vk6.44006', 'vk6.44318', 'vk6.54790', 'vk6.54878', 'vk6.55958', 'vk6.56258', 'vk6.59222', 'vk6.59304', 'vk6.60495', 'vk6.60862', 'vk6.64772', 'vk6.64837', 'vk6.65615', 'vk6.65922', 'vk6.68074', 'vk6.68139', 'vk6.68690', 'vk6.68901'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U3O4U5O3U6U1O5O6U4U2 |
R3 orbit | {'O1O2U3O4U5O3U6U1O5O6U4U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2U1U3O4O5U2U4O6U5O3U6 |
Gauss code of K* | O1O2U3U1O4O5U2U5O6U4O3U6 |
Gauss code of -K* | O1O2U3O4U5O3U6U1O6O5U2U4 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 0 1 0 0 -1 0],[ 0 0 0 0 -2 1 1],[-1 0 0 -1 -1 -1 0],[ 0 0 1 0 1 -2 -1],[ 0 2 1 -1 0 -1 1],[ 1 -1 1 2 1 0 0],[ 0 -1 0 1 -1 0 0]] |
Primitive based matrix | [[ 0 1 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[ 0 0 0 1 0 -2 1],[ 0 0 -1 0 1 -1 0],[ 0 1 0 -1 0 1 -2],[ 0 1 2 1 -1 0 -1],[ 1 1 -1 0 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-1,0,0,0,0,1,0,0,1,1,1,-1,0,2,-1,-1,1,0,-1,2,1] |
Phi over symmetry | [-1,0,0,0,0,1,-1,0,1,2,1,-1,1,0,0,-1,-2,0,1,1,1] |
Phi of -K | [-1,0,0,0,0,1,-1,0,1,2,1,-1,1,0,0,-1,-2,0,1,1,1] |
Phi of K* | [-1,0,0,0,0,1,0,0,1,1,1,-1,1,2,0,-1,0,-1,-1,1,2] |
Phi of -K* | [-1,0,0,0,0,1,-1,0,1,2,1,1,-2,0,0,-1,1,0,-1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | z^2+20z+37 |
Enhanced Jones-Krushkal polynomial | w^3z^2+20w^2z+37w |
Inner characteristic polynomial | t^6+17t^4+51t^2+4 |
Outer characteristic polynomial | t^7+19t^5+69t^3+9t |
Flat arrow polynomial | -8*K1**2 + 4*K2 + 5 |
2-strand cable arrow polynomial | -64*K1**6 + 544*K1**4*K2 - 4928*K1**4 - 288*K1**3*K3 - 2784*K1**2*K2**2 + 8712*K1**2*K2 - 3284*K1**2 + 2776*K1*K2*K3 - 128*K2**4 + 128*K2**2*K4 - 3152*K2**2 - 684*K3**2 - 32*K4**2 + 3182 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {4}, {1, 3}]] |
If K is slice | False |