Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2013

Min(phi) over symmetries of the knot is: [-1,0,0,0,0,1,-1,0,1,2,1,-1,1,0,0,-1,-2,0,1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.2013']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+19t^5+69t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2013']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 544*K1**4*K2 - 4928*K1**4 - 288*K1**3*K3 - 2784*K1**2*K2**2 + 8712*K1**2*K2 - 3284*K1**2 + 2776*K1*K2*K3 - 128*K2**4 + 128*K2**2*K4 - 3152*K2**2 - 684*K3**2 - 32*K4**2 + 3182
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2013']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16559', 'vk6.16652', 'vk6.18144', 'vk6.18480', 'vk6.22962', 'vk6.23083', 'vk6.24603', 'vk6.25016', 'vk6.34959', 'vk6.35080', 'vk6.36734', 'vk6.37153', 'vk6.42532', 'vk6.42643', 'vk6.44006', 'vk6.44318', 'vk6.54790', 'vk6.54878', 'vk6.55958', 'vk6.56258', 'vk6.59222', 'vk6.59304', 'vk6.60495', 'vk6.60862', 'vk6.64772', 'vk6.64837', 'vk6.65615', 'vk6.65922', 'vk6.68074', 'vk6.68139', 'vk6.68690', 'vk6.68901']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U3O4U5O3U6U1O5O6U4U2
R3 orbit {'O1O2U3O4U5O3U6U1O5O6U4U2'}
R3 orbit length 1
Gauss code of -K O1O2U1U3O4O5U2U4O6U5O3U6
Gauss code of K* O1O2U3U1O4O5U2U5O6U4O3U6
Gauss code of -K* O1O2U3O4U5O3U6U1O6O5U2U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 0 1 0 0 -1 0],[ 0 0 0 0 -2 1 1],[-1 0 0 -1 -1 -1 0],[ 0 0 1 0 1 -2 -1],[ 0 2 1 -1 0 -1 1],[ 1 -1 1 2 1 0 0],[ 0 -1 0 1 -1 0 0]]
Primitive based matrix [[ 0 1 0 0 0 0 -1],[-1 0 0 0 -1 -1 -1],[ 0 0 0 1 0 -2 1],[ 0 0 -1 0 1 -1 0],[ 0 1 0 -1 0 1 -2],[ 0 1 2 1 -1 0 -1],[ 1 1 -1 0 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,0,0,0,0,1,0,0,1,1,1,-1,0,2,-1,-1,1,0,-1,2,1]
Phi over symmetry [-1,0,0,0,0,1,-1,0,1,2,1,-1,1,0,0,-1,-2,0,1,1,1]
Phi of -K [-1,0,0,0,0,1,-1,0,1,2,1,-1,1,0,0,-1,-2,0,1,1,1]
Phi of K* [-1,0,0,0,0,1,0,0,1,1,1,-1,1,2,0,-1,0,-1,-1,1,2]
Phi of -K* [-1,0,0,0,0,1,-1,0,1,2,1,1,-2,0,0,-1,1,0,-1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial z^2+20z+37
Enhanced Jones-Krushkal polynomial w^3z^2+20w^2z+37w
Inner characteristic polynomial t^6+17t^4+51t^2+4
Outer characteristic polynomial t^7+19t^5+69t^3+9t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -64*K1**6 + 544*K1**4*K2 - 4928*K1**4 - 288*K1**3*K3 - 2784*K1**2*K2**2 + 8712*K1**2*K2 - 3284*K1**2 + 2776*K1*K2*K3 - 128*K2**4 + 128*K2**2*K4 - 3152*K2**2 - 684*K3**2 - 32*K4**2 + 3182
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{6}, {2, 5}, {4}, {1, 3}]]
If K is slice False
Contact