| Gauss code |
O1O2U3O4U2O5U4U6O3O6U1U5 |
| R3 orbit |
{'O1O2U3O4U2O5U4U6O3O6U1U5'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2U3U2O4O5U4U6O3U1O6U5 |
| Gauss code of K* |
O1O2U3U2O4O5U4U6O3U1O6U5 |
| Gauss code of -K* |
Same |
| Diagrammatic symmetry type |
- |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 0 -1 0 1 1],[ 1 0 0 -1 1 1 2],[ 0 0 0 -1 1 0 1],[ 1 1 1 0 0 1 1],[ 0 -1 -1 0 0 1 0],[-1 -1 0 -1 -1 0 -1],[-1 -2 -1 -1 0 1 0]] |
| Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 1 0 -1 -1 -2],[-1 -1 0 -1 0 -1 -1],[ 0 0 1 0 -1 0 -1],[ 0 1 0 1 0 -1 0],[ 1 1 1 0 1 0 1],[ 1 2 1 1 0 -1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-1,-1,0,0,1,1,-1,0,1,1,2,1,0,1,1,1,0,1,1,0,-1] |
| Phi over symmetry |
[-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,-1,0,1,1,0,-1] |
| Phi of -K |
[-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,-1,0,1,1,0,-1] |
| Phi of K* |
[-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,-1,0,1,1,0,-1] |
| Phi of -K* |
[-1,-1,0,0,1,1,-1,0,1,1,2,1,0,1,1,1,0,1,1,0,-1] |
| Symmetry type of based matrix |
- |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
| Enhanced Jones-Krushkal polynomial |
3w^3z^2+20w^2z+29w |
| Inner characteristic polynomial |
t^6+14t^4+25t^2+1 |
| Outer characteristic polynomial |
t^7+18t^5+39t^3+5t |
| Flat arrow polynomial |
-12*K1**2 + 6*K2 + 7 |
| 2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 1088*K1**4*K2 - 2496*K1**4 + 192*K1**3*K2*K3 - 128*K1**3*K3 + 1216*K1**2*K2**3 - 6848*K1**2*K2**2 - 192*K1**2*K2*K4 + 7296*K1**2*K2 - 128*K1**2*K3**2 - 3024*K1**2 - 896*K1*K2**2*K3 + 4592*K1*K2*K3 + 208*K1*K3*K4 - 1136*K2**4 + 896*K2**2*K4 - 2168*K2**2 - 752*K3**2 - 132*K4**2 + 2538 |
| Genus of based matrix |
0 |
| Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}]] |
| If K is slice |
True |