Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2019

Min(phi) over symmetries of the knot is: [-1,0,0,0,0,1,-1,-1,1,1,2,-1,-1,0,1,-1,-1,0,-1,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.2019']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+17t^5+37t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2019']
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 2752*K1**4 - 96*K1**3*K3 + 96*K1**2*K2**3 - 4768*K1**2*K2**2 + 9224*K1**2*K2 - 5336*K1**2 - 192*K1*K2**2*K3 + 4952*K1*K2*K3 + 48*K1*K3*K4 - 576*K2**4 + 568*K2**2*K4 - 3936*K2**2 - 1272*K3**2 - 128*K4**2 + 4070
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2019']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73351', 'vk6.73382', 'vk6.73513', 'vk6.73561', 'vk6.73722', 'vk6.73841', 'vk6.74257', 'vk6.74885', 'vk6.75322', 'vk6.75523', 'vk6.75841', 'vk6.76434', 'vk6.78241', 'vk6.78306', 'vk6.78489', 'vk6.78646', 'vk6.78841', 'vk6.79301', 'vk6.80065', 'vk6.80092', 'vk6.80214', 'vk6.80272', 'vk6.80404', 'vk6.80766', 'vk6.81952', 'vk6.82682', 'vk6.84745', 'vk6.85044', 'vk6.85169', 'vk6.86534', 'vk6.87334', 'vk6.89437']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U3O4U1O5U4U2O6O3U5U6
R3 orbit {'O1O2U3O4U1O5U4U2O6O3U5U6'}
R3 orbit length 1
Gauss code of -K O1O2U3U4O5O3U1U6O4U2O6U5
Gauss code of K* O1O2U3U4O5O3U6U2O4U1O6U5
Gauss code of -K* O1O2U3O4U2O5U1U4O6O3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 1 0 0 0 0],[ 1 0 2 -1 1 1 -1],[-1 -2 0 -1 0 1 0],[ 0 1 1 0 0 -1 -1],[ 0 -1 0 0 0 1 1],[ 0 -1 -1 1 -1 0 1],[ 0 1 0 1 -1 -1 0]]
Primitive based matrix [[ 0 1 0 0 0 0 -1],[-1 0 1 0 0 -1 -2],[ 0 -1 0 1 -1 1 -1],[ 0 0 -1 0 -1 1 1],[ 0 0 1 1 0 0 -1],[ 0 1 -1 -1 0 0 1],[ 1 2 1 -1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,0,0,0,0,1,-1,0,0,1,2,-1,1,-1,1,1,-1,-1,0,1,-1]
Phi over symmetry [-1,0,0,0,0,1,-1,-1,1,1,2,-1,-1,0,1,-1,-1,0,-1,-1,0]
Phi of -K [-1,0,0,0,0,1,0,0,2,2,0,-1,-1,0,1,-1,-1,2,-1,1,0]
Phi of K* [-1,0,0,0,0,1,0,1,1,2,0,-1,0,-1,2,-1,-1,2,1,0,0]
Phi of -K* [-1,0,0,0,0,1,-1,-1,1,1,2,-1,-1,0,1,-1,-1,0,-1,-1,0]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+15t^4+17t^2+1
Outer characteristic polynomial t^7+17t^5+37t^3+8t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial 96*K1**4*K2 - 2752*K1**4 - 96*K1**3*K3 + 96*K1**2*K2**3 - 4768*K1**2*K2**2 + 9224*K1**2*K2 - 5336*K1**2 - 192*K1*K2**2*K3 + 4952*K1*K2*K3 + 48*K1*K3*K4 - 576*K2**4 + 568*K2**2*K4 - 3936*K2**2 - 1272*K3**2 - 128*K4**2 + 4070
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {4, 5}, {3}, {1, 2}]]
If K is slice False
Contact