Min(phi) over symmetries of the knot is: [-1,-1,1,1,0,0,1,1,0,0] |
Flat knots (up to 7 crossings) with same phi are :['4.10', '5.106', '6.2037'] |
Arrow polynomial of the knot is: -4*K1**2 + 2*K2 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.5', '4.7', '4.10', '4.11', '6.142', '6.563', '6.606', '6.788', '6.892', '6.944', '6.949', '6.971', '6.1011', '6.1060', '6.1124', '6.1212', '6.1238', '6.1241', '6.1274', '6.1291', '6.1304', '6.1309', '6.1312', '6.1373', '6.1390', '6.1392', '6.1393', '6.1394', '6.1403', '6.1407', '6.1412', '6.1413', '6.1423', '6.1424', '6.1425', '6.1426', '6.1438', '6.1440', '6.1448', '6.1449', '6.1452', '6.1453', '6.1456', '6.1457', '6.1478', '6.1479', '6.1520', '6.1554', '6.1559', '6.1588', '6.1589', '6.1609', '6.1610', '6.1619', '6.1621', '6.1626', '6.1630', '6.1632', '6.1633', '6.1643', '6.1657', '6.1689', '6.1721', '6.1723', '6.1737', '6.1764', '6.1777', '6.1783', '6.1808', '6.1816', '6.1853', '6.1855', '6.1856', '6.1860', '6.1864', '6.1871', '6.1872', '6.1875', '6.1882', '6.1891', '6.1894', '6.1895', '6.1896', '6.1897', '6.1898', '6.1900', '6.1902', '6.1903', '6.1938', '6.1940', '6.1942', '6.1946', '6.1947', '6.1952', '6.1956', '6.1957', '6.1959', '6.1965', '6.1968', '6.1969', '6.1970', '6.1972', '6.1973', '6.1974', '6.2000', '6.2006', '6.2012', '6.2032', '6.2033', '6.2035', '6.2036', '6.2037', '6.2038', '6.2040', '6.2041', '6.2042', '6.2044', '6.2045', '6.2047', '6.2048', '6.2049', '6.2052', '6.2053', '6.2054', '6.2055', '6.2058', '6.2060', '6.2061', '6.2062', '6.2067', '6.2069', '6.2072', '6.2073', '6.2076', '6.2077', '6.2080'] |
Outer characteristic polynomial of the knot is: t^5+6t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['4.10', '5.106', '6.2037'] |
2-strand cable arrow polynomial of the knot is: -5760*K1**4 - 1344*K1**2*K2**2 + 4320*K1**2*K2 + 2032*K1**2 + 832*K1*K2*K3 - 48*K2**4 + 32*K2**2*K4 - 448*K2**2 - 80*K3**2 - 4*K4**2 + 466 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2037'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.3219', 'vk6.3232', 'vk6.3329', 'vk6.3344', 'vk6.3452', 'vk6.3506', 'vk6.15219', 'vk6.15252', 'vk6.33866', 'vk6.33881', 'vk6.34329', 'vk6.48097', 'vk6.48163', 'vk6.54451'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is -. |
The reverse -K is |
The mirror image K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2U1O3U4U3O5O4U5O6U2U6 |
R3 orbit | {'O1O2U1O3U4U3O5O4U5O6U2U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2U3U1O3U4O5O4U6U5O6U2 |
Gauss code of K* | O1O2U3U1O3U4O5O4U6U5O6U2 |
Gauss code of -K* | Same |
Diagrammatic symmetry type | - |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -1 0 1 0 -1 1],[ 1 0 1 0 1 0 1],[ 0 -1 0 1 0 -1 1],[-1 0 -1 0 -1 -1 0],[ 0 -1 0 1 0 -1 1],[ 1 0 1 1 1 0 0],[-1 -1 -1 0 -1 0 0]] |
Primitive based matrix | [[ 0 1 1 -1 -1],[-1 0 0 0 -1],[-1 0 0 -1 0],[ 1 0 1 0 0],[ 1 1 0 0 0]] |
If based matrix primitive | False |
Phi of primitive based matrix | [-1,-1,1,1,0,0,1,1,0,0] |
Phi over symmetry | [-1,-1,1,1,0,0,1,1,0,0] |
Phi of -K | [-1,-1,1,1,0,1,2,2,1,0] |
Phi of K* | [-1,-1,1,1,0,1,2,2,1,0] |
Phi of -K* | [-1,-1,1,1,0,0,1,1,0,0] |
Symmetry type of based matrix | - |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 12z+25 |
Enhanced Jones-Krushkal polynomial | 12w^2z+25w |
Inner characteristic polynomial | t^4+2t^2+1 |
Outer characteristic polynomial | t^5+6t^3+5t |
Flat arrow polynomial | -4*K1**2 + 2*K2 + 3 |
2-strand cable arrow polynomial | -5760*K1**4 - 1344*K1**2*K2**2 + 4320*K1**2*K2 + 2032*K1**2 + 832*K1*K2*K3 - 48*K2**4 + 32*K2**2*K4 - 448*K2**2 - 80*K3**2 - 4*K4**2 + 466 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {4}, {1, 3}, {2}]] |
If K is slice | True |