Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2039

Min(phi) over symmetries of the knot is: [-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,-1,0,1,1,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.2017', '6.2039']
Arrow polynomial of the knot is: -8*K1**2 + 4*K2 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.668', '6.711', '6.777', '6.803', '6.828', '6.1015', '6.1032', '6.1055', '6.1082', '6.1132', '6.1264', '6.1288', '6.1333', '6.1391', '6.1395', '6.1396', '6.1400', '6.1404', '6.1405', '6.1419', '6.1471', '6.1473', '6.1536', '6.1563', '6.1611', '6.1618', '6.1623', '6.1627', '6.1629', '6.1631', '6.1695', '6.1700', '6.1731', '6.1740', '6.1767', '6.1773', '6.1790', '6.1792', '6.1796', '6.1848', '6.1899', '6.1901', '6.1937', '6.1954', '6.1955', '6.1958', '6.1964', '6.1975', '6.1997', '6.1998', '6.1999', '6.2002', '6.2003', '6.2004', '6.2005', '6.2007', '6.2008', '6.2009', '6.2010', '6.2011', '6.2013', '6.2018', '6.2019', '6.2021', '6.2034', '6.2039', '6.2043', '6.2046', '6.2050', '6.2051', '6.2057', '6.2063']
Outer characteristic polynomial of the knot is: t^7+14t^5+35t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2039']
2-strand cable arrow polynomial of the knot is: -128*K1**6 - 1152*K1**4*K2**2 + 1472*K1**4*K2 - 3360*K1**4 + 1216*K1**3*K2*K3 - 576*K1**3*K3 + 768*K1**2*K2**3 - 4832*K1**2*K2**2 - 320*K1**2*K2*K4 + 6432*K1**2*K2 - 608*K1**2*K3**2 - 1992*K1**2 - 512*K1*K2**2*K3 + 3952*K1*K2*K3 + 416*K1*K3*K4 - 288*K2**4 + 288*K2**2*K4 - 2040*K2**2 - 776*K3**2 - 96*K4**2 + 2134
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2039']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.14088', 'vk6.14281', 'vk6.15512', 'vk6.16012', 'vk6.16269', 'vk6.16278', 'vk6.22581', 'vk6.34044', 'vk6.34085', 'vk6.34486', 'vk6.34537', 'vk6.34568', 'vk6.42265', 'vk6.54063', 'vk6.54286', 'vk6.54519', 'vk6.54566', 'vk6.59019', 'vk6.64515', 'vk6.64625']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is -.
The reverse -K is
The mirror image K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U1O3U4U3O5O6U2O4U5U6
R3 orbit {'O1O2U1O3U4U3O5O6U2O4U5U6'}
R3 orbit length 1
Gauss code of -K O1O2U3U4O3U5O6O5U1U2O4U6
Gauss code of K* O1O2U3U4O3U5O6O5U1U2O4U6
Gauss code of -K* Same
Diagrammatic symmetry type -
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 0 1 0 -1 1],[ 1 0 1 0 0 1 1],[ 0 -1 0 0 -1 0 1],[-1 0 0 0 -1 -1 -1],[ 0 0 1 1 0 -1 0],[ 1 -1 0 1 1 0 1],[-1 -1 -1 1 0 -1 0]]
Primitive based matrix [[ 0 1 1 0 0 -1 -1],[-1 0 1 0 -1 -1 -1],[-1 -1 0 -1 0 0 -1],[ 0 0 1 0 1 0 -1],[ 0 1 0 -1 0 -1 0],[ 1 1 0 0 1 0 1],[ 1 1 1 1 0 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,-1,0,1,1,0,-1]
Phi over symmetry [-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,-1,0,1,1,0,-1]
Phi of -K [-1,-1,0,0,1,1,-1,0,1,1,2,1,0,1,1,1,0,1,1,0,-1]
Phi of K* [-1,-1,0,0,1,1,-1,0,1,1,2,1,0,1,1,1,0,1,1,0,-1]
Phi of -K* [-1,-1,0,0,1,1,-1,0,1,1,1,1,0,0,1,-1,0,1,1,0,-1]
Symmetry type of based matrix -
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2+21w^2z+27w
Inner characteristic polynomial t^6+10t^4+21t^2+1
Outer characteristic polynomial t^7+14t^5+35t^3+5t
Flat arrow polynomial -8*K1**2 + 4*K2 + 5
2-strand cable arrow polynomial -128*K1**6 - 1152*K1**4*K2**2 + 1472*K1**4*K2 - 3360*K1**4 + 1216*K1**3*K2*K3 - 576*K1**3*K3 + 768*K1**2*K2**3 - 4832*K1**2*K2**2 - 320*K1**2*K2*K4 + 6432*K1**2*K2 - 608*K1**2*K3**2 - 1992*K1**2 - 512*K1*K2**2*K3 + 3952*K1*K2*K3 + 416*K1*K3*K4 - 288*K2**4 + 288*K2**2*K4 - 2040*K2**2 - 776*K3**2 - 96*K4**2 + 2134
Genus of based matrix 0
Fillings of based matrix [[{5, 6}, {2, 4}, {1, 3}]]
If K is slice True
Contact