Gauss code |
O1O2O3O4O5U2O6U4U1U6U3U5 |
R3 orbit |
{'O1O2O3O4O5U2U3O6U1U4U6U5', 'O1O2O3O4O5U2O6U4U1U6U3U5'} |
R3 orbit length |
2 |
Gauss code of -K |
O1O2O3O4O5U1U3U6U5U2O6U4 |
Gauss code of K* |
O1O2O3O4O5U2U6U4U1U5O6U3 |
Gauss code of -K* |
O1O2O3O4O5U3O6U1U5U2U6U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -3 1 -1 4 2],[ 3 0 -1 3 1 5 2],[ 3 1 0 2 1 3 1],[-1 -3 -2 0 -1 2 1],[ 1 -1 -1 1 0 2 1],[-4 -5 -3 -2 -2 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 4 2 1 -1 -3 -3],[-4 0 0 -2 -2 -3 -5],[-2 0 0 -1 -1 -1 -2],[-1 2 1 0 -1 -2 -3],[ 1 2 1 1 0 -1 -1],[ 3 3 1 2 1 0 1],[ 3 5 2 3 1 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-2,-1,1,3,3,0,2,2,3,5,1,1,1,2,1,2,3,1,1,-1] |
Phi over symmetry |
[-4,-2,-1,1,3,3,0,2,2,3,5,1,1,1,2,1,2,3,1,1,-1] |
Phi of -K |
[-3,-3,-1,1,2,4,-1,1,2,4,4,1,1,3,2,1,2,3,0,1,2] |
Phi of K* |
[-4,-2,-1,1,3,3,2,1,3,2,4,0,2,3,4,1,1,2,1,1,-1] |
Phi of -K* |
[-3,-3,-1,1,2,4,-1,1,3,2,5,1,2,1,3,1,1,2,1,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^4+2t^3-t^2 |
Normalized Jones-Krushkal polynomial |
4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+17w^2z+19w |
Inner characteristic polynomial |
t^6+66t^4+8t^2 |
Outer characteristic polynomial |
t^7+106t^5+41t^3+3t |
Flat arrow polynomial |
4*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial |
-16*K1**4 + 64*K1**3*K2*K3 - 128*K1**3*K3 + 64*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 1888*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 224*K1**2*K2*K4 + 2616*K1**2*K2 - 208*K1**2*K3**2 - 16*K1**2*K4**2 - 2520*K1**2 + 800*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 768*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 128*K1*K2**2*K5 + 32*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 256*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 3344*K1*K2*K3 + 32*K1*K3**3*K4 + 568*K1*K3*K4 + 72*K1*K4*K5 - 32*K2**4*K4**2 + 128*K2**4*K4 - 1056*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 800*K2**2*K3**2 - 192*K2**2*K4**2 + 1104*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 1576*K2**2 - 64*K2*K3**2*K4 + 408*K2*K3*K5 + 80*K2*K4*K6 + 8*K2*K5*K7 - 32*K3**4 - 32*K3**2*K4**2 + 24*K3**2*K6 - 1084*K3**2 - 346*K4**2 - 60*K5**2 - 8*K6**2 + 1904 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}]] |
If K is slice |
False |