Gauss code |
O1O2U1U2O3O4U3U4O5O6U5U6 |
R3 orbit |
{'O1O2U1U2O3O4U3U4O5O6U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2U3U4O3O4U5U6O5O6U1U2 |
Gauss code of K* |
O1O2U3U4O3O4U5U6O5O6U1U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 -1 1 -1 1],[ 1 0 1 0 0 0 0],[-1 -1 0 0 0 0 0],[ 1 0 0 0 1 0 0],[-1 0 0 -1 0 0 0],[ 1 0 0 0 0 0 1],[-1 0 0 0 0 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 -1 -1 -1],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 -1 0],[-1 0 0 0 -1 0 0],[ 1 0 0 1 0 0 0],[ 1 0 1 0 0 0 0],[ 1 1 0 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0] |
Phi over symmetry |
[-1,-1,-1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0] |
Phi of -K |
[-1,-1,-1,1,1,1,0,0,1,2,2,0,2,1,2,2,2,1,0,0,0] |
Phi of K* |
[-1,-1,-1,1,1,1,0,0,1,2,2,0,2,1,2,2,2,1,0,0,0] |
Phi of -K* |
[-1,-1,-1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
7z^2+27z+27 |
Enhanced Jones-Krushkal polynomial |
7w^3z^2+27w^2z+27w |
Inner characteristic polynomial |
t^6+3t^4+3t^2+1 |
Outer characteristic polynomial |
t^7+9t^5+15t^3+7t |
Flat arrow polynomial |
16*K1**3 - 12*K1**2 - 12*K1*K2 - 6*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-2048*K1**6 - 6144*K1**4*K2**2 + 7680*K1**4*K2 - 4896*K1**4 + 3840*K1**3*K2*K3 - 1280*K1**3*K3 - 5760*K1**2*K2**4 + 9216*K1**2*K2**3 + 1536*K1**2*K2**2*K4 - 13248*K1**2*K2**2 - 2304*K1**2*K2*K4 + 8160*K1**2*K2 - 96*K1**2*K3**2 - 672*K1**2 + 4416*K1*K2**3*K3 - 2880*K1*K2**2*K3 - 1344*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6336*K1*K2*K3 + 240*K1*K3*K4 + 48*K1*K4*K5 - 1536*K2**6 + 1536*K2**4*K4 - 3216*K2**4 - 320*K2**3*K6 - 384*K2**2*K3**2 - 144*K2**2*K4**2 + 2256*K2**2*K4 - 204*K2**2 + 192*K2*K3*K5 + 48*K2*K4*K6 - 392*K3**2 - 132*K4**2 - 24*K5**2 - 4*K6**2 + 1714 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
True |