| Gauss code |
O1O2U1U3O4O3U2U5O6O5U4U6 |
| R3 orbit |
{'O1O2U1U3O4O3U2U5O6O5U4U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2U1U3O4O3U5U2O6O5U6U4 |
| Gauss code of K* |
O1O2U3U4O3O5U1U5O4O6U2U6 |
| Gauss code of -K* |
O1O2U3U1O3O4U5U2O5O6U4U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 0 1 -1 1 0],[ 1 0 1 1 1 1 0],[ 0 -1 0 0 0 0 1],[-1 -1 0 0 -1 0 -1],[ 1 -1 0 1 0 1 0],[-1 -1 0 0 -1 0 0],[ 0 0 -1 1 0 0 0]] |
| Primitive based matrix |
[[ 0 1 1 0 0 -1 -1],[-1 0 0 0 0 -1 -1],[-1 0 0 0 -1 -1 -1],[ 0 0 0 0 1 0 -1],[ 0 0 1 -1 0 0 0],[ 1 1 1 0 0 0 -1],[ 1 1 1 1 0 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-1,-1,0,0,1,1,0,0,0,1,1,0,1,1,1,-1,0,1,0,0,1] |
| Phi over symmetry |
[-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,-1,0,1,0,0,0] |
| Phi of -K |
[-1,-1,0,0,1,1,-1,0,1,1,1,1,1,1,1,-1,1,1,0,1,0] |
| Phi of K* |
[-1,-1,0,0,1,1,0,0,1,1,1,1,1,1,1,-1,1,1,0,1,1] |
| Phi of -K* |
[-1,-1,0,0,1,1,-1,0,0,1,1,0,1,1,1,-1,0,1,0,0,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
0 |
| Normalized Jones-Krushkal polynomial |
2z^2+23z+39 |
| Enhanced Jones-Krushkal polynomial |
2w^3z^2+23w^2z+39w |
| Inner characteristic polynomial |
t^6+8t^4+13t^2+1 |
| Outer characteristic polynomial |
t^7+12t^5+25t^3+8t |
| Flat arrow polynomial |
4*K1**3 - 12*K1**2 - 8*K1*K2 + K1 + 6*K2 + 3*K3 + 7 |
| 2-strand cable arrow polynomial |
-640*K1**6 - 448*K1**4*K2**2 + 2720*K1**4*K2 - 6112*K1**4 + 1088*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1376*K1**3*K3 - 192*K1**2*K2**4 + 1152*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 8672*K1**2*K2**2 - 1056*K1**2*K2*K4 + 13072*K1**2*K2 - 1056*K1**2*K3**2 - 64*K1**2*K3*K5 - 192*K1**2*K4**2 - 5896*K1**2 + 480*K1*K2**3*K3 - 1504*K1*K2**2*K3 - 256*K1*K2**2*K5 - 224*K1*K2*K3*K4 + 9488*K1*K2*K3 + 1824*K1*K3*K4 + 296*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 1024*K2**4 - 32*K2**3*K6 - 320*K2**2*K3**2 - 128*K2**2*K4**2 + 1576*K2**2*K4 - 5410*K2**2 + 352*K2*K3*K5 + 104*K2*K4*K6 - 2580*K3**2 - 800*K4**2 - 140*K5**2 - 22*K6**2 + 5670 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
| If K is slice |
False |