Gauss code |
O1O2U1U3O4O3U5U2O5O6U4U6 |
R3 orbit |
{'O1O2U1U3O4O3U5U2O5O6U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
Same |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
a |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 1 -1 -1 1],[ 1 0 1 1 1 0 0],[-1 -1 0 -1 -1 -1 1],[-1 -1 1 0 -1 -2 0],[ 1 -1 1 1 0 1 1],[ 1 0 1 2 -1 0 1],[-1 0 -1 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 1 1 1 -1 -1 -1],[-1 0 1 0 -1 -1 -2],[-1 -1 0 1 -1 -1 -1],[-1 0 -1 0 0 -1 -1],[ 1 1 1 0 0 1 0],[ 1 1 1 1 -1 0 1],[ 1 2 1 1 0 -1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,1,1,1,-1,0,1,1,2,-1,1,1,1,0,1,1,-1,0,-1] |
Phi over symmetry |
[-1,-1,-1,1,1,1,-1,0,1,1,2,-1,1,1,1,0,1,1,-1,0,-1] |
Phi of -K |
[-1,-1,-1,1,1,1,-1,0,1,1,2,-1,1,1,1,0,1,1,-1,0,-1] |
Phi of K* |
[-1,-1,-1,1,1,1,-1,0,1,1,2,-1,1,1,1,0,1,1,-1,0,-1] |
Phi of -K* |
[-1,-1,-1,1,1,1,-1,0,1,1,2,-1,1,1,1,0,1,1,-1,0,-1] |
Symmetry type of based matrix |
a |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+28z+25 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+28w^2z+25w |
Inner characteristic polynomial |
t^6+15t^4+39t^2+9 |
Outer characteristic polynomial |
t^7+21t^5+59t^3+15t |
Flat arrow polynomial |
8*K1**3 - 4*K1**2 - 12*K1*K2 + 2*K2 + 4*K3 + 3 |
2-strand cable arrow polynomial |
3456*K1**4*K2 - 6784*K1**4 + 1664*K1**3*K2*K3 - 512*K1**3*K3 - 256*K1**2*K2**4 + 896*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 10496*K1**2*K2**2 - 896*K1**2*K2*K4 + 10912*K1**2*K2 - 1280*K1**2*K3**2 - 64*K1**2*K4**2 - 2752*K1**2 + 768*K1*K2**3*K3 - 3200*K1*K2**2*K3 - 1024*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 9440*K1*K2*K3 + 1920*K1*K3*K4 + 320*K1*K4*K5 - 64*K2**6 + 192*K2**4*K4 - 1168*K2**4 - 320*K2**3*K6 - 832*K2**2*K3**2 - 144*K2**2*K4**2 + 2720*K2**2*K4 - 4912*K2**2 + 1056*K2*K3*K5 + 384*K2*K4*K6 - 2176*K3**2 - 924*K4**2 - 288*K5**2 - 96*K6**2 + 4330 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
True |