Gauss code |
O1O2U1U3O4O5U4U2O6O3U6U5 |
R3 orbit |
{'O1O2U1U3O4O5U4U2O6O3U6U5'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2U3U4O5O4U1U6O3O6U5U2 |
Gauss code of K* |
O1O2U3U4O3O5U6U2O6O4U1U5 |
Gauss code of -K* |
O1O2U3U2O4O5U1U5O3O6U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 1 1 -1 1 -1],[ 1 0 1 0 0 1 0],[-1 -1 0 -1 0 1 -1],[-1 0 1 0 -1 -1 -1],[ 1 0 0 1 0 1 0],[-1 -1 -1 1 -1 0 0],[ 1 0 1 1 0 0 0]] |
Primitive based matrix |
[[ 0 1 1 1 -1 -1 -1],[-1 0 1 -1 0 -1 -1],[-1 -1 0 1 -1 0 -1],[-1 1 -1 0 -1 -1 0],[ 1 0 1 1 0 0 0],[ 1 1 0 1 0 0 0],[ 1 1 1 0 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,1,1,1,-1,1,0,1,1,-1,1,0,1,1,1,0,0,0,0] |
Phi over symmetry |
[-1,-1,-1,1,1,1,-1,1,0,1,1,-1,1,0,1,1,1,0,0,0,0] |
Phi of -K |
[-1,-1,-1,1,1,1,0,0,1,1,2,0,1,2,1,2,1,1,-1,1,-1] |
Phi of K* |
[-1,-1,-1,1,1,1,-1,1,1,1,2,-1,1,2,1,2,1,1,0,0,0] |
Phi of -K* |
[-1,-1,-1,1,1,1,0,0,0,1,1,0,1,0,1,1,1,0,-1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
z^2+21z+39 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+21w^2z+39w |
Inner characteristic polynomial |
t^6+9t^4+21t^2+4 |
Outer characteristic polynomial |
t^7+15t^5+51t^3+10t |
Flat arrow polynomial |
4*K1**3 - 12*K1**2 - 12*K1*K2 + 3*K1 + 6*K2 + 5*K3 + 7 |
2-strand cable arrow polynomial |
-256*K1**6 + 1440*K1**4*K2 - 4416*K1**4 + 864*K1**3*K2*K3 + 192*K1**3*K3*K4 - 1696*K1**3*K3 + 384*K1**2*K2**3 - 4368*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 11496*K1**2*K2 - 1344*K1**2*K3**2 - 240*K1**2*K4**2 - 7944*K1**2 + 96*K1*K2**3*K3 - 1920*K1*K2**2*K3 - 192*K1*K2**2*K5 - 672*K1*K2*K3*K4 + 9432*K1*K2*K3 + 2640*K1*K3*K4 + 600*K1*K4*K5 - 32*K2**6 + 96*K2**4*K4 - 480*K2**4 - 160*K2**3*K6 - 336*K2**2*K3**2 - 144*K2**2*K4**2 + 2208*K2**2*K4 - 7302*K2**2 + 864*K2*K3*K5 + 408*K2*K4*K6 - 3712*K3**2 - 1620*K4**2 - 432*K5**2 - 138*K6**2 + 7162 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
True |