Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.2084

Min(phi) over symmetries of the knot is: [0,0,0,0,-1,0,0,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.2084', '7.45422']
Arrow polynomial of the knot is: -16*K1**2 + 8*K2 + 9
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.1244', '6.1401', '6.2079', '6.2084']
Outer characteristic polynomial of the knot is: t^5+2t^3+t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.2084', '7.45422']
2-strand cable arrow polynomial of the knot is: 1408*K1**4*K2 - 6336*K1**4 - 640*K1**3*K3 + 256*K1**2*K2**3 - 6912*K1**2*K2**2 - 256*K1**2*K2*K4 + 14336*K1**2*K2 - 6992*K1**2 - 512*K1*K2**2*K3 + 7104*K1*K2*K3 + 384*K1*K3*K4 - 704*K2**4 + 1088*K2**2*K4 - 6032*K2**2 - 1840*K3**2 - 400*K4**2 + 6046
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.2084']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72425', 'vk6.72477', 'vk6.72836', 'vk6.72898', 'vk6.74458', 'vk6.75071', 'vk6.76967', 'vk6.77786', 'vk6.77975', 'vk6.79465', 'vk6.79914', 'vk6.80934', 'vk6.87228', 'vk6.89367']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is a.
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2U3U1O4O3U5U2O6O5U4U6
R3 orbit {'O1O2U3U1O4O3U5U2O6O5U4U6'}
R3 orbit length 1
Gauss code of -K Same
Gauss code of K* Same
Gauss code of -K* Same
Diagrammatic symmetry type a
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 0 1 0 -1 0 0],[ 0 0 0 0 0 -1 0],[-1 0 0 -1 -1 -1 0],[ 0 0 1 0 -1 0 -1],[ 1 0 1 1 0 1 0],[ 0 1 1 0 -1 0 0],[ 0 0 0 1 0 0 0]]
Primitive based matrix [[ 0 0 0 0 0],[ 0 0 1 0 0],[ 0 -1 0 0 0],[ 0 0 0 0 1],[ 0 0 0 -1 0]]
If based matrix primitive False
Phi of primitive based matrix [0,0,0,0,-1,0,0,0,0,-1]
Phi over symmetry [0,0,0,0,-1,0,0,0,0,-1]
Phi of -K [0,0,0,0,-1,0,0,0,0,-1]
Phi of K* [0,0,0,0,-1,0,0,0,0,-1]
Phi of -K* [0,0,0,0,-1,0,0,0,0,-1]
Symmetry type of based matrix a
u-polynomial 0
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^4+2t^2+1
Outer characteristic polynomial t^5+2t^3+t
Flat arrow polynomial -16*K1**2 + 8*K2 + 9
2-strand cable arrow polynomial 1408*K1**4*K2 - 6336*K1**4 - 640*K1**3*K3 + 256*K1**2*K2**3 - 6912*K1**2*K2**2 - 256*K1**2*K2*K4 + 14336*K1**2*K2 - 6992*K1**2 - 512*K1*K2**2*K3 + 7104*K1*K2*K3 + 384*K1*K3*K4 - 704*K2**4 + 1088*K2**2*K4 - 6032*K2**2 - 1840*K3**2 - 400*K4**2 + 6046
Genus of based matrix 0
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{3, 6}, {1, 5}, {2, 4}]]
If K is slice True
Contact