Gauss code |
O1O2O3O4O5O6U1U3U5U4U6U2 |
R3 orbit |
{'O1O2O3O4O5O6U1U3U5U4U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U1U3U2U4U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U6U2U4U3U5 |
Gauss code of -K* |
O1O2O3O4O5O6U2U4U3U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 1 -2 1 1 4],[ 5 0 5 1 3 2 4],[-1 -5 0 -3 0 0 3],[ 2 -1 3 0 2 1 3],[-1 -3 0 -2 0 0 2],[-1 -2 0 -1 0 0 1],[-4 -4 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 4 1 1 1 -2 -5],[-4 0 -1 -2 -3 -3 -4],[-1 1 0 0 0 -1 -2],[-1 2 0 0 0 -2 -3],[-1 3 0 0 0 -3 -5],[ 2 3 1 2 3 0 -1],[ 5 4 2 3 5 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,-1,-1,2,5,1,2,3,3,4,0,0,1,2,0,2,3,3,5,1] |
Phi over symmetry |
[-5,-2,1,1,1,4,1,2,3,5,4,1,2,3,3,0,0,1,0,2,3] |
Phi of -K |
[-5,-2,1,1,1,4,2,1,3,4,5,0,1,2,3,0,0,0,0,1,2] |
Phi of K* |
[-4,-1,-1,-1,2,5,0,1,2,3,5,0,0,0,1,0,1,3,2,4,2] |
Phi of -K* |
[-5,-2,1,1,1,4,1,2,3,5,4,1,2,3,3,0,0,1,0,2,3] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-t^4+t^2-3t |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+22w^2z+25w |
Inner characteristic polynomial |
t^6+92t^4+8t^2 |
Outer characteristic polynomial |
t^7+140t^5+85t^3+4t |
Flat arrow polynomial |
4*K1**2*K3 - 4*K1*K2 - 2*K1*K3 + 2*K1 - 2*K2*K3 + K2 + K4 + 1 |
2-strand cable arrow polynomial |
-864*K1**3*K3 - 384*K1**2*K2**2 + 640*K1**2*K2*K3**2 + 64*K1**2*K2*K6**2 + 2832*K1**2*K2 - 1888*K1**2*K3**2 - 192*K1**2*K3*K5 - 64*K1**2*K4*K6 - 112*K1**2*K6**2 - 3784*K1**2 + 512*K1*K2**3*K3 - 1216*K1*K2**2*K3 + 256*K1*K2*K3**3 - 672*K1*K2*K3*K4 + 32*K1*K2*K3*K6**2 - 160*K1*K2*K3*K6 + 5464*K1*K2*K3 - 64*K1*K2*K5*K6 - 128*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2048*K1*K3*K4 + 160*K1*K4*K5 + 184*K1*K5*K6 + 64*K1*K6*K7 - 256*K2**4*K3**2 - 32*K2**4*K6**2 - 208*K2**4 + 128*K2**3*K3*K5 + 64*K2**3*K4*K6 - 32*K2**3*K6 + 256*K2**2*K3**2*K4 - 1376*K2**2*K3**2 - 64*K2**2*K3*K7 - 48*K2**2*K4**2 + 32*K2**2*K4*K6**2 + 624*K2**2*K4 - 104*K2**2*K6**2 - 2688*K2**2 - 64*K2*K3**2*K4 - 64*K2*K3*K4*K5 + 1072*K2*K3*K5 - 32*K2*K4**2*K6 + 248*K2*K4*K6 + 32*K2*K6*K8 - 320*K3**4 - 64*K3**2*K4**2 - 32*K3**2*K6**2 + 328*K3**2*K6 - 2088*K3**2 + 40*K3*K4*K7 + 8*K3*K6*K9 - 8*K4**2*K6**2 - 566*K4**2 - 196*K5**2 - 144*K6**2 - 4*K7**2 - 2*K8**2 + 2862 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |