Gauss code |
O1O2O3O4O5O6U1U3U5U6U2U4 |
R3 orbit |
{'O1O2O3O4O5O6U1U3U5U6U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U3U5U1U2U4U6 |
Gauss code of K* |
O1O2O3O4O5O6U1U5U2U6U3U4 |
Gauss code of -K* |
O1O2O3O4O5O6U3U4U1U5U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -5 0 -2 3 1 3],[ 5 0 4 1 5 2 3],[ 0 -4 0 -2 2 0 2],[ 2 -1 2 0 3 1 2],[-3 -5 -2 -3 0 -1 1],[-1 -2 0 -1 1 0 1],[-3 -3 -2 -2 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 3 1 0 -2 -5],[-3 0 1 -1 -2 -3 -5],[-3 -1 0 -1 -2 -2 -3],[-1 1 1 0 0 -1 -2],[ 0 2 2 0 0 -2 -4],[ 2 3 2 1 2 0 -1],[ 5 5 3 2 4 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-3,-1,0,2,5,-1,1,2,3,5,1,2,2,3,0,1,2,2,4,1] |
Phi over symmetry |
[-5,-2,0,1,3,3,1,4,2,3,5,2,1,2,3,0,2,2,1,1,-1] |
Phi of -K |
[-5,-2,0,1,3,3,2,1,4,3,5,0,2,2,3,1,1,1,1,1,-1] |
Phi of K* |
[-3,-3,-1,0,2,5,-1,1,1,3,5,1,1,2,3,1,2,4,0,1,2] |
Phi of -K* |
[-5,-2,0,1,3,3,1,4,2,3,5,2,1,2,3,0,2,2,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^5-2t^3+t^2-t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-8w^3z+13w^2z+11w |
Inner characteristic polynomial |
t^6+84t^4 |
Outer characteristic polynomial |
t^7+132t^5+81t^3 |
Flat arrow polynomial |
4*K1**2*K3 - 2*K1**2 - 6*K1*K2 - 2*K1*K4 + 2*K1 + K2 + 2*K3 + 2 |
2-strand cable arrow polynomial |
-16*K1**4 + 96*K1**3*K2*K3 - 192*K1**2*K2**2*K3**2 - 976*K1**2*K2**2 + 296*K1**2*K2 - 288*K1**2*K3**2 - 832*K1**2 + 128*K1*K2**3*K3**3 + 1120*K1*K2**3*K3 + 256*K1*K2*K3**3 + 2192*K1*K2*K3 + 200*K1*K3*K4 + 48*K1*K5*K6 - 512*K2**4*K3**2 - 32*K2**4*K6**2 - 584*K2**4 + 320*K2**3*K3*K5 + 64*K2**3*K4*K6 + 32*K2**3*K6*K8 - 128*K2**2*K3**4 - 1264*K2**2*K3**2 - 56*K2**2*K4**2 + 72*K2**2*K4 - 64*K2**2*K5**2 - 64*K2**2*K6**2 - 8*K2**2*K8**2 - 380*K2**2 + 32*K2*K3**3*K5 + 624*K2*K3*K5 + 88*K2*K4*K6 + 8*K2*K5*K7 + 32*K2*K6*K8 - 112*K3**4 + 16*K3**2*K6 - 820*K3**2 + 8*K3*K5*K8 - 86*K4**2 - 140*K5**2 - 60*K6**2 - 12*K8**2 + 992 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{5, 6}, {1, 4}, {2, 3}], [{6}, {2, 5}, {3, 4}, {1}]] |
If K is slice |
False |